Roles of epidemiology in public health

Surveillance Outbreak Investigation

- Epidemiological Study
- Evaluation of Public Health Measures

Source: RM Page, et al. "Basic epidemiological methods and biostatistics, 1995 p.32

Definition of outbreak

 The occurrence of cases of an illness, specific health-related behaviour, or other health-related events clearly in <u>excess of</u> <u>normal expectancy</u>. The area and the period in which the cases occur are specified precisely.

Excess of normal expectancy

More than

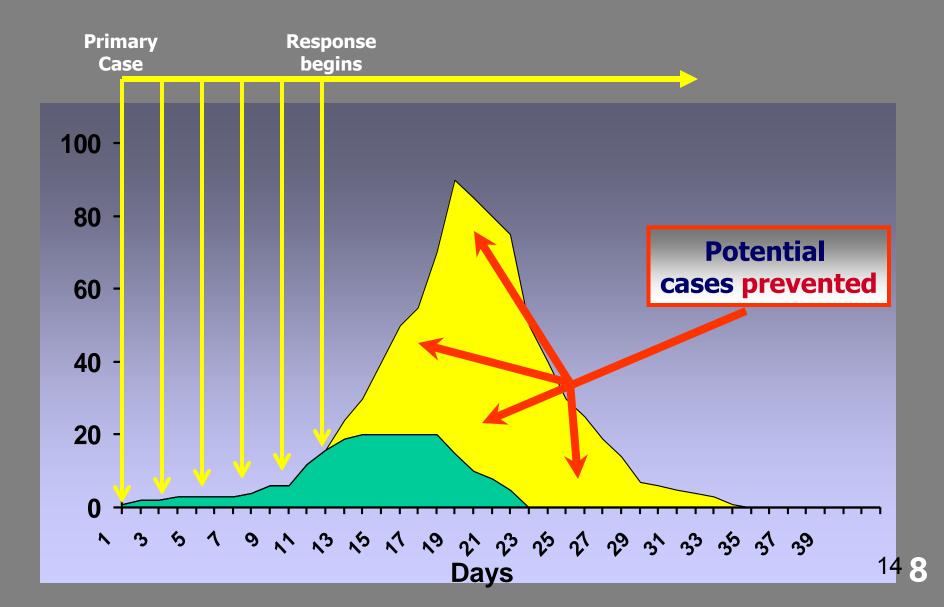
- -5-Yr median or
- Average number + 2sd of previous 5 yr or
- Average number of previous few wks or months
- 2 cases with epidemiologic linkage in short time
- 1 cases of a new emerging disease

Terms

Epidemic = Outbreak (Outbreak -> sense of urgency, Epidemic -> sense of wide spreading) Cluster = an aggregation of cases in a given place & time Pandemic = Epidemic that spreads over many countries of regions of the world Endemic = Disease that routinely occurs in a given place

Surveillance is a way for outbreak detection

5


The media: main source of outbreakrelated information

Objectives of outbreak investigation

- To control the current outbreak
- To prevent occurrence of future outbreak
- Research for more knowledge of the diseases
- To evaluate the effectiveness of prevention programmes
- To evaluate the effectiveness of the existing surveillance
- To train health professionals
- To respond to public or political or legal concern

"Ideal" sequence of events

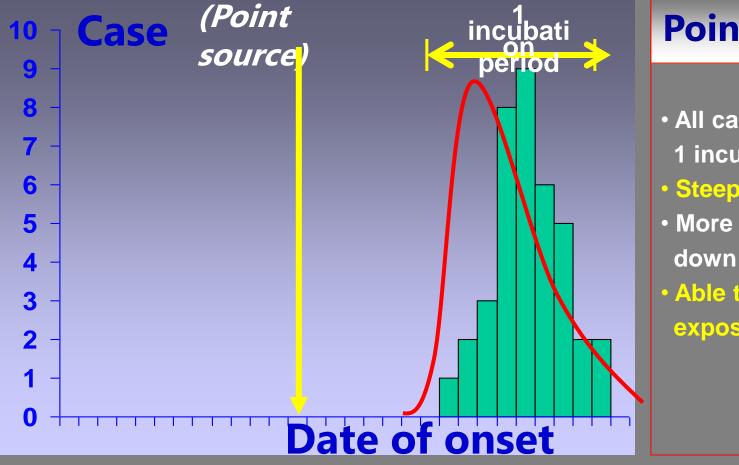
Relative priority: investigation and control of an outbreak

Agent	Source/Mode of transmission			
	Known	Unknown		
Known	inv.+ contr.+++ co	inv.+++ ontr.+		
Unknown	contr.+++ inv.+++	inv.+++ contr.+		

Note: inv. = investigation and contr. = control

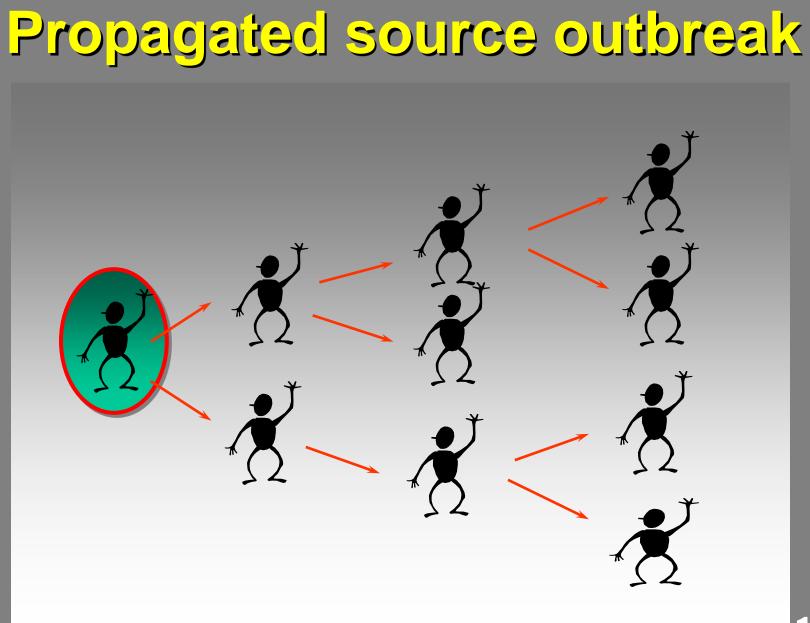
Outbreak patterns

Common source outbreak


 Point
 Intermittent
 Continuous

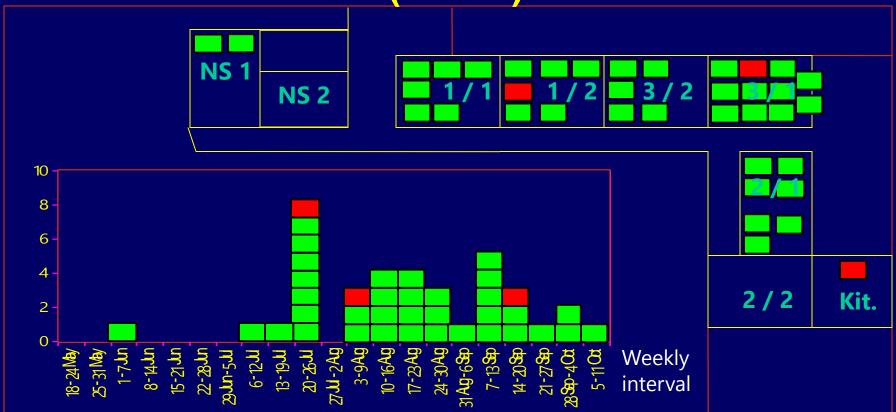
 Propagated source outbreak

 (person-to-person)



Epidemic curve of common source outbreak

Point source


- All cases occur in 1 incubation period
- Steep upslope
- More gradual down slope
- Able to predict
- exposure period

Epidemic curve of propagated source outbreak

Mump cases by onset and classroom, Kindergarten "A", Maehongson, Thailand, May – September 1999 (N = 38)

1 child case 1 officer case

Source: Laosiritaworn, Propagated source outbreak, a single case of mumps lead to a school-wide outbreak

Steps of an outbreak investigation

Prepare for Field Work: Rapid Response Team 1. Confirm outbreak and diagnosis
 Define case and start case-findi
 Descriptive data collection and Confirm outbreak and diagnosis Define case and start case-finding **5 Develop hypotheses Apolytical studies to** analysis 6. Analytical studies to test hypotheses
 7. Special studies, e.g., environmental Special studies, e.g., environmental and laboratory studies 8 Communicate conclusions and recommend control measures Implement control measures Follow-up the control implementations

1 Prepare for field work : Rapid Response Team

- A. Investigation: knowledge, equipment, specimen collection, transportation, etc.
- **B.** Administration
- C. Consultation

2, Confirm outbreak and diagnosis

- Is a number of cases <u>REALLY</u> rising???
- How many patients diagnosed?
 Clinical? With Lab?
 - –What is an expected number of cases?
 - Surveillance data, OPD card, Hospital Discharge Registry, etc.

Confirm outbreak and diagnosis

Always ask yourself: What can be done now to intervene the outbreak?

Scenario 1

Many adults in a remote village were sick with fever, severe joint and muscle pain and rash all over the body

- Is this an outbreak?
- What is the likely diagnosis?
- Which intervention should be started?
- Should we start the investigation?

Outbreak confirmed ✓ Maybe measles, rubella, dengue etc. Investigation warranted Shall we start the vaccination or spray mosquitoes?

Outbreak confirmed, further investigations warranted

Epidemiologist Microbiologist Clinician Environmentalist Administrator Press officer Others

Team conducts field investigation

3. Define case and start case-finding

Case definition

- Standard set of criteria for deciding if a person should be classified as suffering from the disease under investigation
- Clinical criteria, restrictions of time, place, person
- Simple, practical, objective
- Sensitivity versus specificity

Case definition

 Components -Time -Place -Person -Clinical symptoms & signs

· Sources

-Textbook

-Expert

Case definition: example

Patient older than 5 years with severe dehydration or dying of acute watery diarrhoea in town "x"

Sensitivity versus specificity

24

Sensitive case definition

SPECIFICITY

Danger of overload

Most cases detected, but ...

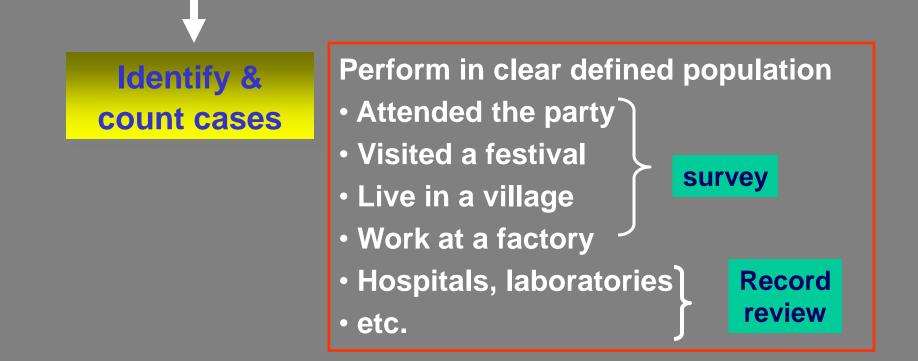
Many false positives Many specimens to be tested Low% of specimen tested +ve

Cases missed, but ...

Danger of under-report

Few false positives Fewer specimens to be tested High% specimens tested +ve

Multiple case definition


Suspect

- Patient with severe diarrhoea

• Probable

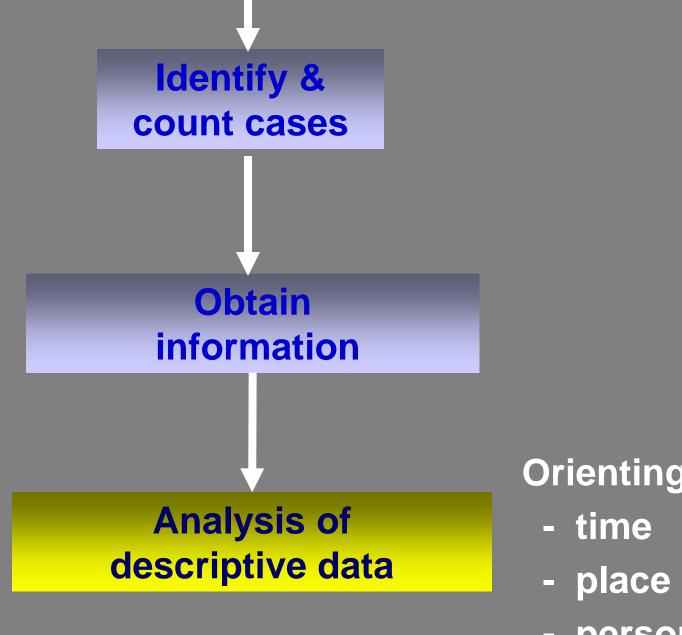
- Patient older than 5 years with severe dehydration or dying of acute watery diarrhoea ...
- Confirmed
 - Isolation of Vibrio cholerae from stool of patient ...

Active case finding

Why do active case finding ...

4. Descriptive data collection and analysis

Obtain information


Identifying information Demographic information Clinical details Risk factors

Identifying info.

Survey of hepatitis B cares in a nale juvenile detention, Saraburi, Thailand November 1999

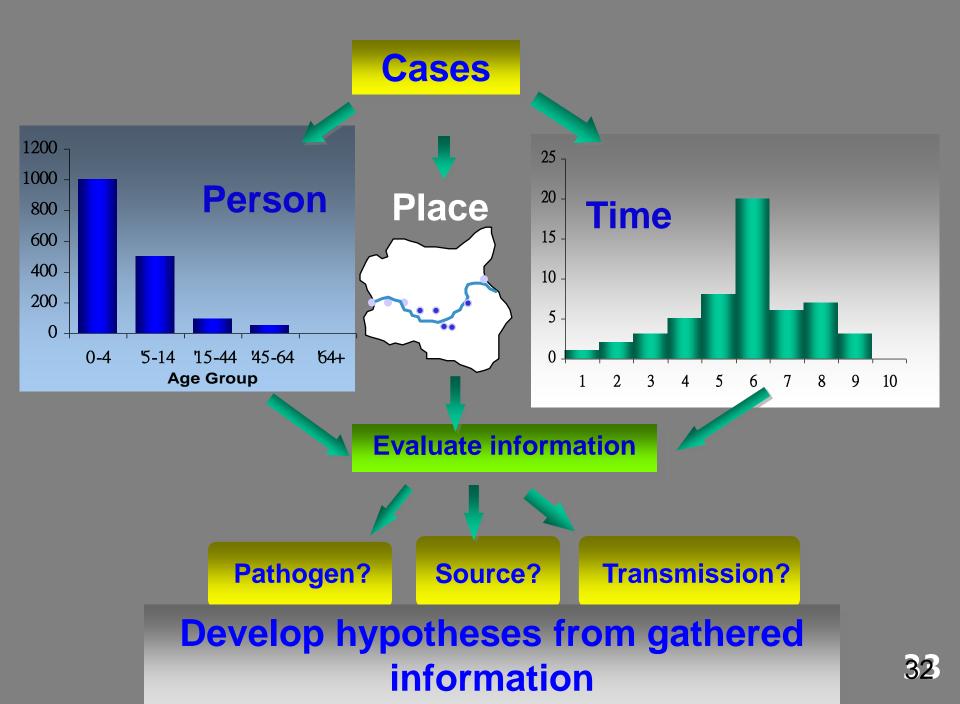
Date of intervie	w 🕴 Intervi	ever's nane	D	fort n. nkor	
Dationt's mone Summe		Ace (in vears)	N	mber of denistary (1	-5)
Study field	1. Machanic	2. Carpanter	3. Electric		
	4. Barber	5. Misic	6 Agriature	Demogra	phic info.

Clinical symptons ((sidkinsid	<u>e trejuz</u>	erile detention, sina	1 Jan 99	Possi	de ris k	(factors
	No	Yes	Onset of symptons		Tatocing	Υ	N
Jaundice					Hmoseual	Y	Ν
Nausia/Vomiting					Injected dugu	ser Y	N
Fatique							
This heralitis cases is laboratory confi V N							
	Clinica	l info.			Ris	k fac	tors 30

Orienting cases in

- person

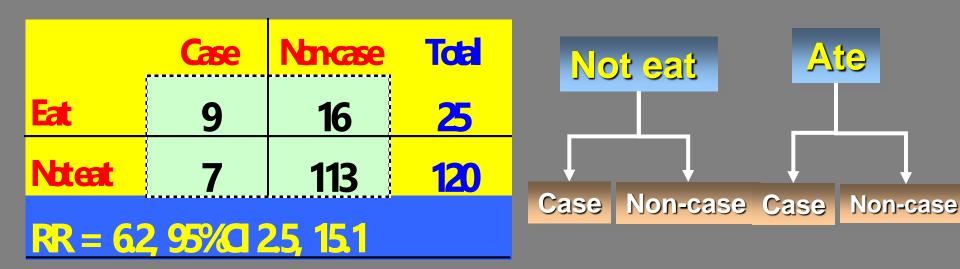
5. Develop hypotheses


- Who is at risk of becoming ill?
- What is the source and the vehicle?
- What is the mode of transmission?

Examples

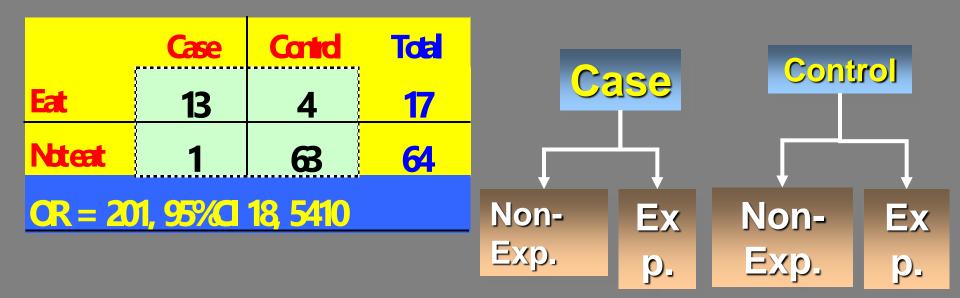
• Tattooing was the risk of getting hepatitis B infection, because 13 out of 15 cases had new tattoos.

• A shallow well was the source of shigella, because most of case used water from there.


• Juice from the school cafeteria caused the illness, because a pass-by visitor got sick after drank a glass of juice. (outlier case)

6. Analytic studies to test hypotheses

Cohort study


In a shigellosis outbreak, fermented vegetable was suspected to be the implicated food

A person who ate the fermented vegetable was 6.2 times more likely to be ill than a person who did not eat...

Case-control study

In a botulism outbreak, home-canned bamboo shoots was suspected to be the implicated food

Odds of eating bamboo shoots was 201 times greater among cases than controls.

Source: Wongwatcharapaiboon P, EIS Conference 1999 36

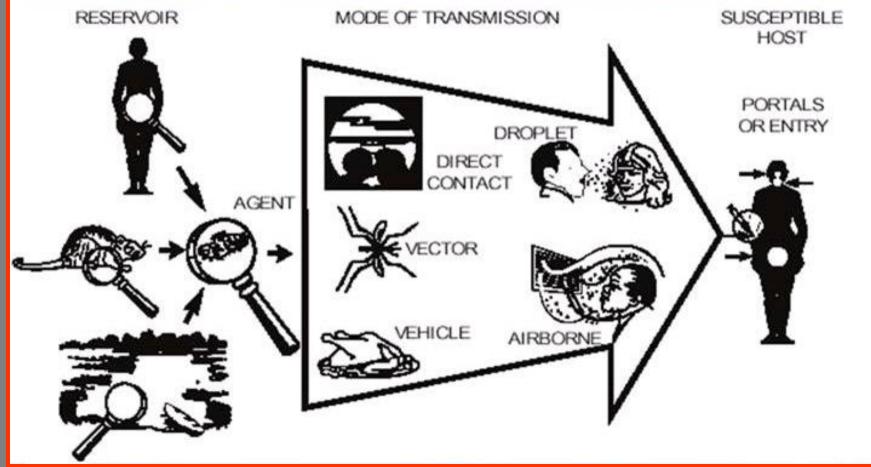
7 Special studies, e.g., environmental and laboratory studies

From: Typhoid Fever Outbreak in Sor-O Village, Tak, Thailand, 1999. A contaminated spring (drinking) water was the source of infection.

Almost of all households had sanitary latrine

Drinking water came from spring, well, mountain pipe water: unsanitary and villagers did not boil it

Garbage was destroyed by burning in the field


Test of water quality

5	Sample	Coliform bacteria (MPN/100ml)	Fecal coliform bacteria(MPN/100ml)
	origin of spring	170	20
	midstream	200	50
	well	30	30
	one case house	300	300
	pipe water	170	4

Source: Kanlayanaphotporn

Communicate conclusions and recommend control measures 9-10. Implement and follow-up the control measures

8

Remove source of contamination

- Remove persons from exposure
- Inactivate / neutralise the pathogen
- Isolate and/or treat infected persons

Interrupt transmission

- Interrupt environmental transmission
- Control vector transmission
- Improve personal sanitation

Modify host response

- Immunise susceptibles
- Use prophylactic chemotherapy

At the end

- Prepare written report
- Communicate public health messages
- Influence public health policy
- Evaluate performance