Epidemiologic Study Design: Descriptive Cross-sectional Study (Surveys) and Sampling

Dr Ko Ko Zaw MBBS, MPH, PhD Professor/Head, Epidemiology Department University of Public Health

Learning Objectives

- List and discuss the choices for survey administration
- Describe why sampling is important in applied research
- Explain what distinguishes a probability sample from a non-probability sample
- List and discuss the types of probability sampling

What is a Survey?

Survey = Observational or descriptive nonexperimental study in which information is collected systematically from individuals or other units (households, businesses, etc.)

- Census = from everyone in population
- Sample Survey = from sample of population
- Poll = for political or public opinion information

Examples of Surveys

- Political opinion polls
- Population-based HIV Impact Assessment Survey (Uganda and elsewhere)
- Myanmar Demographic and Health Survey 2014-15
- Myanmar Micronutrient and Food Consumption Survey (MMFCS) (2016-2017)
- many others

12 Steps to Conducting a Survey

- 1. Determine study question / aims
- 2. Budget, schedule
- 3. Establish the method of data collection
- 4. Establish universe, working population and sampling method
- 5. Establish sample size and inclusion criteria and select the sample

12 Steps to Conducting a Survey

- 6. Design the data collection instrument
- 7. Pre-testing the survey
- 8. Training interviewers
- 9. Implementing the survey
- 10. Coding and data entry
- 11. Analyzing the data
- 12. Reporting the results

Step 3. Establish Method of Data Collection

- Face-to-face (in-person) interview
- Telephone
- Mail
- Self-administered in group setting, i.e., class
- Internet / online
- Other

Method Advantages / Disadvantages

- Face-to-face (in-person) Interview
 - High response rates; flexibility
 - More complete and accurate answers
 - Not dependent on literacy, educational level, or visual acuity
 - Time consuming; potential observer bias
- Telephone Interview
 - Inexpensive; rapid; large numbers or area
 - Non-response; no visual cues; rushed; potential observer bias

Method Advantages / Disadvantages

- Mail
 - Inexpensive; rapid; large numbers or area
 - Non-response; complexity
- Self-administered in Group Setting
 - Requires higher-level approval
 - High response rates
 - answers slanted by peer-pressure or fear of review by higher-level authority
- Online / Internet
 - Limited to skilful users of computer w/ Internet access
 - Non-response
 - Can target large numbers

Step 4. Establish Study Universe, Sampling Frame, and Sampling Method

 Study universe / Target population: group of people who are relevant to the study being conducted

- "Exhaustive survey"
- Every member of population included
- Provides true population value
- With limited resources, only possible in small, geographically concentrated population
- Rare

Stankovic Camp II, Skopje, Macedonia,

What is Sampling?

- Sampling = Procedure by which some members of the population are selected as representatives of the entire population
- Objective: to make observations or measurements on these members, and draw inferences regarding the entire population

Exhaustive Surveys vs. Sampling

Exhaustive Survey

- Measure all individuals
- Obtain true population value
- No confidence interval

Sample

- Measure subset of individuals
- Obtain estimate of value
- Calculate confidence interval

Why sample?

- Gather information from large population using smaller number of people
- Compared with census
 - Can be done at lower cost
 - Can be done in less time
 - Requires fewer resources
- Reasonable (and calculable) accuracy

Probability vs. Non-probability Sampling

Probability

- Based on statistical theory
- Uses random selection of subjects — each has known probability of being selected

Non-probability

- Not based on statistical theory
- Does not use random selection of subjects

Step 4. Establish Study Universe, Sampling Frame, and Sampling Method

- Study universe / Target population: group of people who are relevant to the study being conducted
- Sampling frame: List of people in the target population
- Sample: people from target population selected to be in the study

Sampling Terminology 1

- Study Universe / Sampling Universe / Target Population / Source Population: Population from which a sample will be selected
- Sampling frame: List of people in the target population

 Sample: people from target population selected to be in the study

Probability Sampling Methods

- Simple random sample: number chosen at random from random number table
- Systematic sample: every *n*th entry of a list (ideally, randomly sorted) chosen based on total N and number to be sampled
- Stratified random sample: strata are chosen and simple random samples are chosen within strata
- Cluster sample: sampling within randomly selected clusters

Simple Random Sampling

Principle: Each unit (individual) has same, nonzero probability of being selected for sample

Procedure

- List all individuals
- Use random numbers to select

Simple Random Sampling

Example

- Clinic satisfaction survey
- Sample size (n=50)
- Use clinic log book
- Assign random numbers
- Randomly select 50 patients
 - Table of random numbers
 - Paper slips in a bag/hat
 - Computer generated random numbers
- Conduct the survey

Simple Random Sampling – Example

Draw sample of 5 people		Random number table	
Number 1 2 3 4 5 6 7 8 9 0	Household Kazoora Amanya Amanya Nsubuga Bibodi Musoke Patel Wasswa Olwenyi Gitta Mbazzi	7648 2352 6959 1937 2554 6804 9098 4316 4318 2346 7276 1880 7136 9603 0163 3152 7000 2865 8357 4475 9804 0042 1106 7949 2932 9958 9582 2235 1140 1164 7841 1688 4097 8995 5030 1785 5420 0125 4953 1332 5540 6278 1584 4392 3258 1374 1617 7427	

Simple Random Sampling – Example

Draw sample of 5 people			Random number table
Number 1 2 3 4 5 6 7 8 9 0	Household Kazoora Amanya Nsubuga Bibodi Musoke Patel Wasswa Olwenyi Gitta Mbazzi	1	7648 2352 6959 1937 2554 6804 9098 4316 4318 2346 7276 1880 7136 9603 0163 3152 7000 2865 8357 4475 9804 0042 1106 7949 2932 9958 9582 2235 1140 1164 7841 1688 4097 8995 5030 1785 5420 0125 4953 1332 5540 6278 1584 4392 3258 1374 1617 7427

Simple Random Sampling

Advantage:

- selection not biased
- sampling error easily determined

Disadvantage:

- need complete list of individuals
- Individuals may be scattered and poorly accessible
- Can be expensive

Use: small, geographically concentrated population

Systematic Sampling

 Principle: Units drawn with equal interval between units (data should not be ordered)

Procedure

- Calculate sampling interval (k = N / n)
- Use random number <k to begin
- Select every kth unit from first unit

Analysis: same as simple random sampling

O Systematic Sampling – Example

Draw sample of 5 people		Random number table			table	
K =	10/5=2	7648	2352	6959	1937	
Number	Household	2554	6804	9098	4316	
<u>→</u> 1	Kazoora	4318	2346	7276	1880	
2	Amanya	7136	9603	0163	3152	
→ 3	Nsubuga	7000	2865	8357	4475	
4	Bibodi	9804	0042	1106	7949	
→ 5	Musoke	2932	9958	9582	2235	
6	Patel	1140	1164	7841	1688	
→ 7	Wasswa	4097	8995	5030	1785	
8	Olwenyi	5420	0125	4953	1332	
— 9	Gitta	5540	6278	1584	4392	
0	Mbazzi	3258	1374	1617	7427	
Surveys and Sampling						

25

Systematic Sampling

- Advantage: faster and easier than Simple RS
- Disadvantages:
 - need complete list of individuals
 - can be biased if list has pattern
- Use: small scale survey in geographically concentrated population

Stratified Random Sampling

 Principle: Population is divided into sub-groups (age, sex, etc.) and sample should reflect them

Procedure

- Identify homogeneous sub-groups or strata
- Construct sampling frame in each stratum
- Sampling in each stratum independently

- Sampling unit: Entity (individual, household, school, etc.) selected during a sampling process
- Primary sampling unit (PSU) = sampling unit at the first stage sampling in stratified and cluster surveys (e.g., district, school, household)
- Basic or elementary or secondary sampling unit (SSU) = sampling unit at the second stage sampling in stratified and cluster surveys (e.g., individual)

Stratified Random Sampling – Example

- Clinic patients: 81% women, 19% men
- Divide patients into 2 groups ("strata")
- Create sampling frame for each group
- Select a random sample from each group
 - Can be proportional to source population
 - Can oversample small strata, but then need to use weights in analysis
- Conduct the survey on the 50 selectees

Stratified Random Sampling

Advantages:

- Each subgroup is represented in sample
- allows for oversampling
- can get separate estimates (such as prevalence) from the whole population <u>and</u> from individual strata

Disadvantage:

- Sampling error more difficult to measure

What if...?

 You do not have a complete list of basic sampling units

or

 Survey population is geographically dispersed, so SRS or systematic sampling is impractical Principle: Random sample of clusters (e.g., villages, census tracks), then sample within

Procedure:

- Select PSUs from list of villages, census tracks
 done during planning stage, *in the office*
- In selected clusters, include all or sample (SRS or systematic) of SSUs, done *in the field*

Simple Random Sampling (30 households)

Surveys and Sampling

33

Cluster Sampling (30 households – 3 clusters with 10 HHs)

Surveys and Sampling

34

Cluster Sampling

Advantages:

- Often most feasible method in field
- Efficient basic sampling units closer together
- Does not require list of every individual in pop.

Disadvantage:

- Requires larger sample
- May require weighted analysis*

* WHO 30x7 does not!

Cluster Sampling – Stage 1

- The probability of each village being selected is proportional to the size of its population (PPS)
- PPS assures that each household within the survey area has an equal (known and non-zero) chance of being selected

Probability Proportional to Size (PPS)

N	lot PPS					
	Tsaag- annur	Nogoon- nuur	Ulgii	Altant- sogts	Bugat	Bayan- nuur
	231	912	3,099	376	484	763

PPS

Tsaag-	Nogoon	- Altant-	Bayan-
annur	nuur	Ulgii sogts Bugat	nuur
231	912	3,099 376 484	763

Cluster Sampling: Stage 1

- 1. Construct a list of primary sampling units (e.g. camp sections), and estimated population size of each
- 2. List the cumulative population in an adjacent column
- 3. Calculate **sampling interval**, by dividing total population by number of clusters
- 4. Pick a random start between 1 and sampling interval
- 5. Select first cluster
- 6. Add sampling interval to start number to identify 2nd cluster
- 7. Continue until all clusters have been selected

Stage 1

- Probability proportionate to size (self-weighting in analysis)
- Need list of villages, estimated population of each
- Determine interval by dividing total population by 30
- List villages, start at random starting point for first cluster
- Add interval, identify second cluster
- Repeat for 30 clusters

Stage 2

 Upon arrival in village choose random starting location, then select houses until 7 children are found

Village	Estimated Pop.	Cum. Pop.	Range	
А	250	250	1 – 250	
В	2,500	2,750	251 – 2750	
С	400	3,150	2751 – 3150	
D	650	3,800	3151 – 3800	
E	300	4,100	3801 – 4100	
F	1,500	5,600	4101 – 5600	
G	800	6,400	5601 – 6400	
Н	750	7,150	6401 – 7150	
I	1,200	8,350	7151 – 8350	
J	900	9,250	8350 – 9250	
etc.	etc.	etc.	etc 30000	
Total	30,000	30,000		

Surveys and Sampling

40

Village	Estimated Pop.	Cum. Pop.	Range		
А	250	250	1 – 250	1	← 167
В	2,500	2,750	251 – 2750	2	1,167
С	400	3,150	2751 – 3150	0	2,167
D	650	3,800	3151 – 3800	1	← 3,167
ш	300	4,100	3801 – 4100	0	4,167
F	1,500	5,600	4101 – 5600	2	5,167
G	800	6,400	5601 – 6400	1	←─── 6,167
Н	750	7,150	6401 – 7150	0	7,167
-	1,200	8,350	7151 – 8350	2	8,167
J	900	9,250	8350 – 9250	1	←─── 9,167
etc.	etc.	etc.	etc 30000	20	20 167
Total	30,000	30,000		30	~ 23,107

Village	Estimated Pop.	Cum. Pop.	Range		
A	250	250	1 – 250	1	0 613
В	2,500	2,750	251 – 2750	2	3 🗧 1,613
С	400	3,150	2751 – 3150	0	0 2,613
D	650	3,800	3151 – 3800	1	1 - 3,613
E	300	4,100	3801 – 4100	0	0
F	1,500	5,600	4101 – 5600	2	1 4,613
G	800	6,400	5601 – 6400	1	1 - 5,613
Н	750	7,150	6401 – 7150	0	1 - 6,613
I	1,200	8,350	7151 – 8350	2	1 - 7,613
J	900	9,250	8350 – 9250	1	1 - 8,613
etc.	etc.	etc.	etc 30000	20	21 - 29 613
Total	30,000	30,000		30	30

PPS Cluster Sampling – Advantages, Disadvantages

Advantages

- Does not require rosters
- Simple analysis (no weights required)
- Efficient
- Proven

Disadvantages

- Cannot analyze subgroups
- Loss of precision due to correlation within clusters (need to account for "design effect")

Non-probability Sampling

- Methods
 - Subjective / Purposive / Judgment select key people
 - Convenience invite reachable people
 - Respondent-driven, Snowball ask participants to bring in friends
 - Volunteer sampling invite volunteers to participate
 - Quota sampling identify predetermined number of people
 - Other
- Advantages easier, cheaper, quicker
- Disadvantages
 - Often biased, not representative of population of interest

Remaining Steps

- 6. Design the data collection instrument
- 7. Pre-test the data collection instrument
- 8. Train interviewers
- 9. Implement the survey
- 10. Code and enter data
- 11. Analyze the data
- 12. Report the results

Q1. What type of sampling?

- a. Every 10th listing in pop. register Systematic
- b. Pick names out of a hat.
- c. Approach shoppers at a mall.
- d. Randomly select 5 students
 from each class in an
 elementary school.
- e. Ask each enrollee to bring in 3 acquaintances.

Random

Convenience

Stratified

Snowball / RDS

Q2. Probability vs. Non-Probability

Cluster Convenience Respondent-driven Simple random Stratified random **Subjective Systematic** Volunteer

Probability Non-Probability Non-Probability Probability Probability Non-Probability Probability Non-Probability

Q3. Probability vs. Non-Probability

- Q3a. Which is more likely to provide representative results?
- A3a. **Probability**

- Q3b. Which is usually easier to conduct?
- A3b. Non-Probability

Q4. Need roster?

Q4. Which type of probability sampling requires having a roster (sampling frame) of potential participants?

ClusterDo not needSimple randomNeedStratified randomNeedSystematicNeed

Q5. Which sampling method here?

Q6. Which sampling method here?

- Primary reason for selecting sample is to draw inferences about a population without having to enroll every member
- Probability sampling (rather than non-probability sampling) is necessary to obtain valid results
- Several types of probability samples, each with its advantages and disadvantages
- Realities in the field usually guide choice of sampling strategy