Precision Medicine approach And Obstructive Airway Diseases

Prof Ye Tun Department of Respiratory Medicine Thingunkyun General Hospital

Obstructive airway diseases

- Asthma and COPD
- Have a great personnel and social impact
- May share biological mechanisms (i.e. endotypes), and present similar clinical, functional, imaging and/or biological features that can be observed (i.e. phenotypes) which require individualised treatment

Precision medicine

Treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations

Jameson JL, Longo DL., N Engl J Med 2015

Final objective of precision medicine

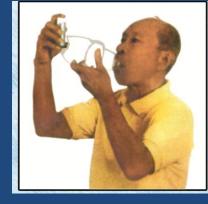
To improve clinical outcomes for individual patients while minimizing unnecessary side effects for those less likely to respond to a given treatment

President Barack Obama launched a research initiative aimed at accelerating progress toward a new era of "precision medicine"

The State of the Union Address on January 20, 2015

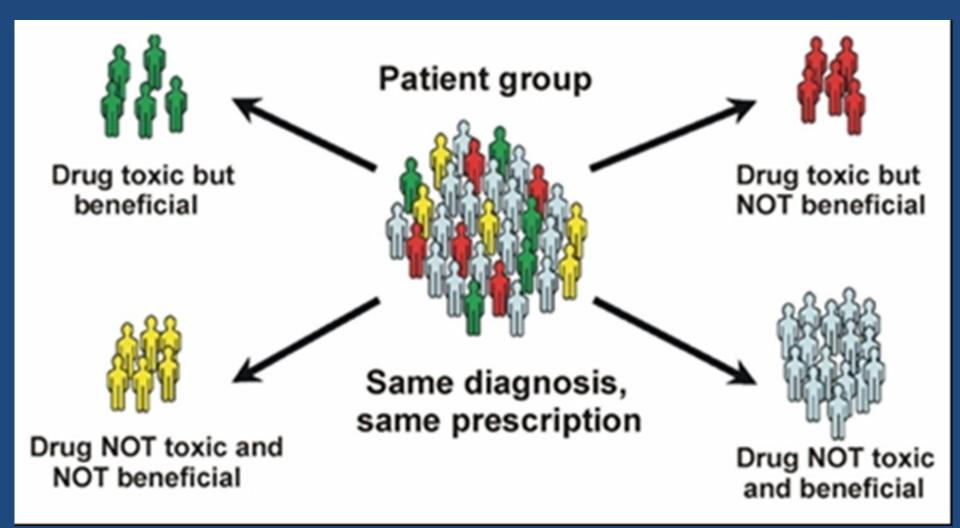
Asthma and COPD

- Both asthma and COPD are "complex" and "heterogeneous"
- Complex
 - They have several components with nonlinear dynamic interactions
- Heterogenous
 - Not all of these components are present in all patients or, in a given patient, at all time points


"Oslerian diagnostic labels" Asthma and COPD

- Do not consider novel genetic, molecular or imaging information
- May be valid for the "stereotypical" patients, but it may be of much less clear value in "intermediate" (and frequent) cases
- The pattern of airway inflammation even in classical cases may not be as distinct as has been assumed

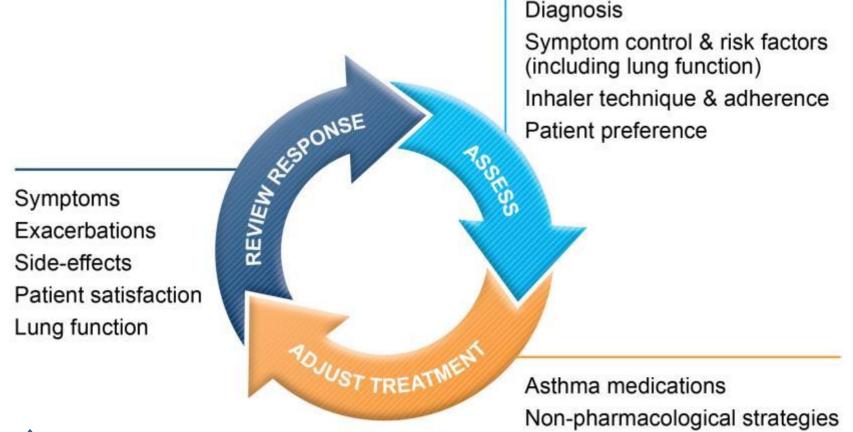
"Oslerian diagnostic label" approach to airway diseases


- Fails to provide optimal care in a significant number of patients because it does not consider the biological complexity of airway diseases and does not consider the distinct endotypes present in each patient
- Does not appreciate common patterns of disease (e.g. chronic cough)

- Can increase clinical practice variability and enhance inappropriate prescription of some drugs (e.g. inhaled corticosteroids) in some patients
- Can contribute to treatment failure and high rates of hospital readmissions
- Inhibits research progress

Agusti A, et al, Eur Respir J 2016

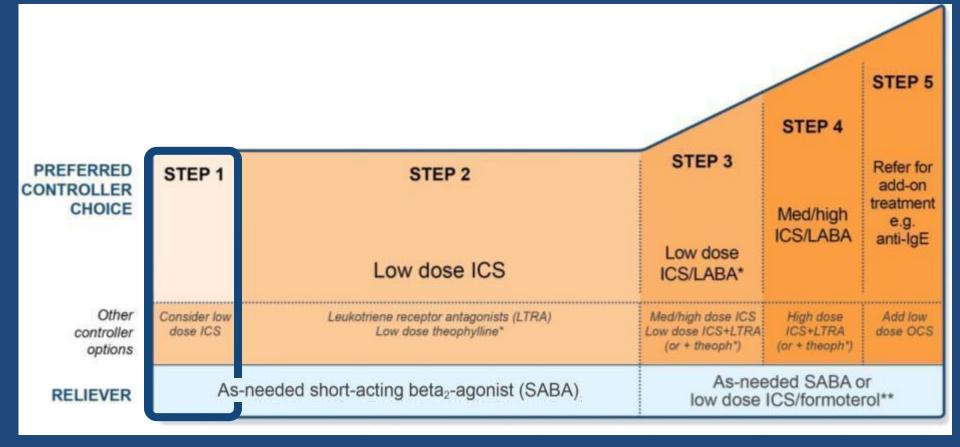
Chakma Justin (Journal of Young Investigators, 2009)


Precision medicine approach to the diagnosis and management of chronic airway diseases

- "Label-free"
- Based on the identification of "treatable traits" in each patient
- These traits can be "treatable" based on "phenotypic" recognition or on deep understanding of the critical causal pathways (e.g. true "endotypes")

"Oslerian diagnostic label" approach

The control-based asthma management cycle

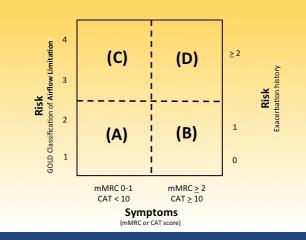

NEW!

GINA 2014

Treat modifiable risk factors

© Global Initiative for Asthma

Stepwise management – pharmacotherapy for Asthma



For children 6-11 years, theophylline is not recommended, and preferred Step 3 is medium dose ICS. For patients prescribed BDP/formoterol or BUD/formoterol maintenance and reliever therapy

GINA 2014,

© Global Initiative for Asthma

INITIA7

Combined Assessment of COPD

When assessing risk, choose the **highest** risk according to GOLD grade or exacerbation history

Patient	Characteristic	Spirometric Classification	Exacerbations per year	mMRC	CAT
А	Low Risk Less Symptoms	GOLD 1-2	≤ 1	0-1	< 10
В	Low Risk More Symptoms	GOLD 1-2	≤ 1	<u>></u> 2	≥ 10
С	High Risk Less Symptoms	GOLD 3-4	<u>></u> 2	0-1	< 10
D	High Risk More Symptoms	GOLD 3-4	<u>></u> 2	<u>></u> 2	≥ 10

Severity of Airflow Limitation in COPD

In patients with $FEV_1/FVC < 0.70$ GOLD 1: Mild $FEV_1 \ge 80\%$ predicted GOLD 2: Moderate $50\% \leq FEV_1 < 80\%$ predicted GOLD 3: Severe $30\% < FEV_1 < 50\%$ predicted GOLD 4: Very Severe $FEV_1 < 30\%$ predicted

*Based on Post-Bronchodilator FEV₁

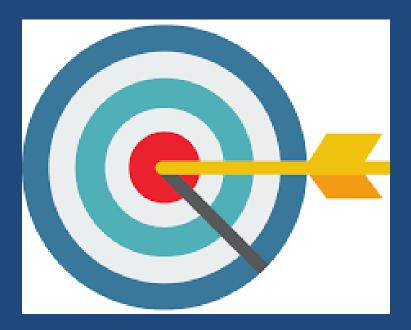
Combined assessment

Assess symptoms

 Assess degree of airflow limitation using spirometry

Assess risk of exacerbations

Combine these assessments for the purpose of improving management of COPD


Manage Stable COPD: Non-pharmacologic treatment

Patient	Essential	Recommended	Depending on local guidelines
Α	Smoking cessation (can include pharmacologic treatment)	Physical activity	Flu vaccination Pneumococcal vaccination
B, C, D	Smoking cessation (can include pharmacologic treatment) Pulmonary rehabilitation	Physical activity	Flu vaccination Pneumococcal vaccination

Manage Stable COPD: Pharmacologic Therapy

Patient	First choice	Second choice	Alternative choices
Α	SAMA prn <i>or</i> SABA prn	LAMA <i>or</i> LABA <i>or</i> SABA and SAMA	Theophylline
В	LAMA <i>or</i> LABA	LAMA and LABA	SABA <i>and/or</i> SAMA Theophylline
С	ICS +LABA <i>or</i> LAMA	LAMA and LABA	PDE4-inh. SABA and/ <i>or</i> SAMA Theophylline
D	ICS + LABA <i>or</i> LAMA	ICS andLAMA <i>or</i> ICS + LABA and LAMA <i>or</i> ICS+LABA and PDE4-inh. <i>or</i> LAMA and LABA <i>or</i> LAMA and PDE4-inh.	Carbocysteine SABA and/ <i>or</i> SAMA Theophylline

Precision medicine approach

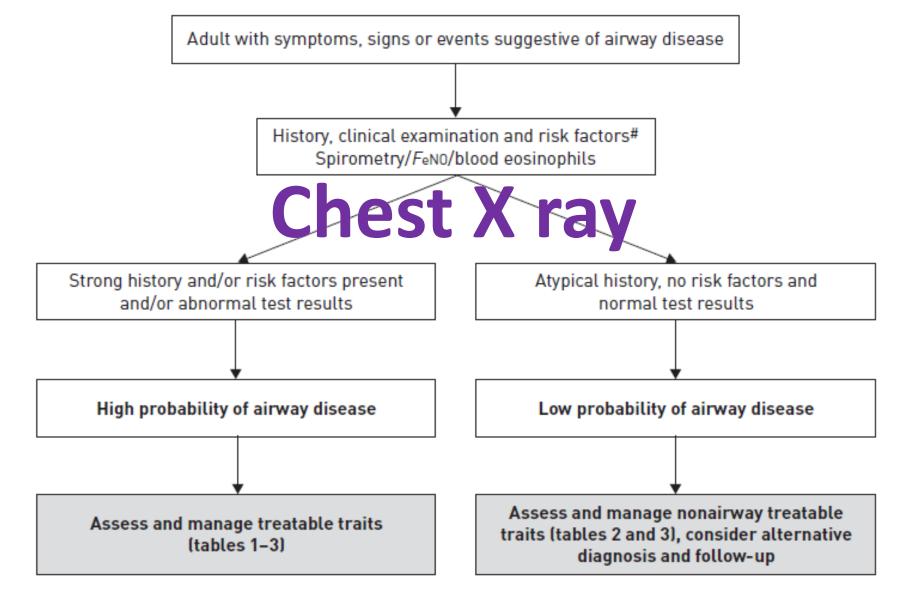
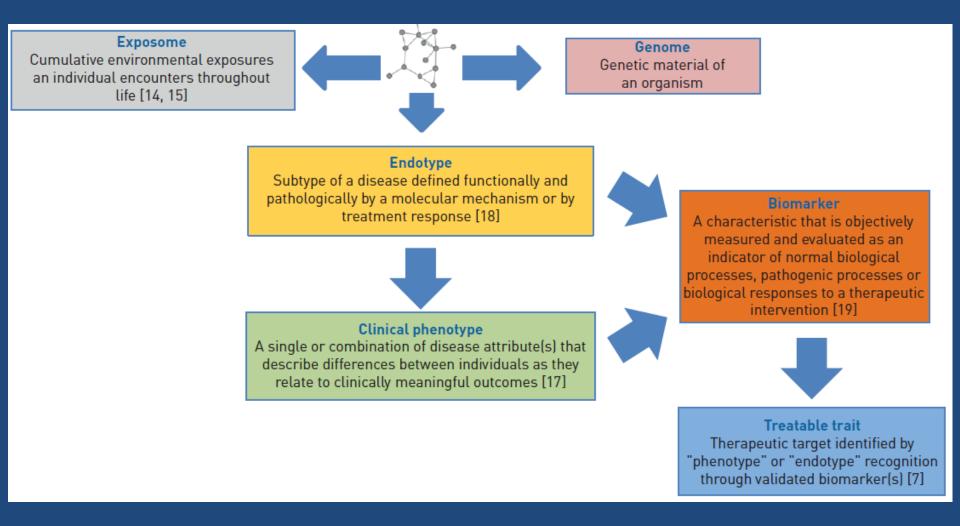



FIGURE 1 Proposed diagnostic strategy for an adult with symptoms, signs or events suggestive of airway disease. For further explanations, see text. FeNO: exhaled nitric oxide fraction. #: smoking, allergies, sputum production, occupation, lung development and growth.

Agusti A, et al, Eur Respir J 2016

The relationships between the exposome and the genome (via complex Biological networks)

Agustí A, Bafadhel M, Beasley R, et al. Eur Respir J 2017

Treatable traits

- Pulmonary
 - Airflow limitation
 - Eosinophilic airway inflammation
 - Chronic bronchitis
 - Airway bacterial colonisation
 - Bronchiectasis
 - Cough reflex hypersensitivity
 - Pre-capillary pulmonary hypertension
 - Chronic respiratory failure
- Extrapulmonary
- Behaviour/lifestyle risk factors

Airflow limitation

FEV₁/FVC <0.7 (or lower limit of normal

- Airway smooth muscle contraction
- Loss of elastic recoil (emphysema)
- Airway mucosal oedema

Airway smooth muscle contraction

Diagnostic criteria

Bronchodilator reversibility
peak expiratory flow variability
positive PC20

Treatment

First choice

- Maintenance:
 - long-acting β2-adrenergic agonists/muscarinic antagonists;
- Rescue:
 - short-acting β2-adrenergic agonists/muscarinic antagonists

Second choice

- Inhaled corticosteroids
- Bronchial thermoplasty

Loss of elastic recoil (emphysema)

Diagnostic criteria

- Chest computed tomography
- DLCO, compliance

First choice

Second choice

- Smoking cessation
- Lung volume reduction surgery
- lung transplantation
- α1-anti-trypsin replacement if deficient, valves, coils

Airway mucosal oedema

Diagnostic criteria

- Chest computed tomography
- Spirometry-induced bronchoconstriction

First choice

• Inhaled corticosteroids

Second choice

Oral corticosteroids,
Anti-interleukin-5, -13, -4

Eosinophilic airway inflammation

Diagnostic criteria

- Sputum eosinophils
- Blood eosinophils
- FeNO, (periostin)

First choice

Second choice

- Inhaled corticosteroids
- Oral corticosteroids
- Leukotriene receptor antagonists
- Anti-IgE
- Anti-interleukin-5, -13, -4

Chronic bronchitis

Diagnostic criteria

Cough and sputum 3 months
 × 2 years (no eosinophilic airway inflammation)

First choice

Second choice

• Smoking cessation

- Carbocysteine,
- Macrolides
- Roflumilast

Airway bacterial colonisation

Diagnostic criteria

- Sputum culture,
- Quantitative PCR

First choice

• Antibiotics

Second choice

Long-term low-dose macrolidesvaccination

Bronchiectasis

Diagnostic criteria

- Chest X ray
- Chest computed tomography

First choice

• Drainage

Second choice

- Macrolides, nebulised antibiotics
- Surgery
- Vaccination

Cough reflex hypersensitivity

Diagnostic criteria

- Capsaicin challenge, cough
- counts, cough questionnaire

First choice

Speech and language treatment

Second choice

Gabapentin

Pre-capillary pulmonary hypertension

Diagnostic criteria

- Doppler echocardiography,
- Brain natriuretic peptide,
- Right heart catheterisation

First choice

Second choice

- Long-term (domiciliary) oxygen therapy
- Noninvasive ventilation
- Lung transplantation

Chronic respiratory failure

• Arterial hypoxemia

• Arterial hypercapnia

Arterial hypoxemia

Diagnostic criteria

First choice

 Long-term (domiciliary) oxygen therapy

Arterial hypercapnia

Diagnostic criteria

First choice

• Optimized medical therapy

Second choice

Noninvasive ventilation

Lung transplantation

Extrapulmonary treatable traits of airway diseases

- Deconditioning
- Obesity
- Cachexia
- OSA
- CVD
- GERD
- Rhino-sinusitis
- Psychiatric disorders

- Persistent systemic inflammation
- Smoking and others
- Exposure to sensitizing agents/pollution
- Symptom perception
- Inhaler device
- Adherence to treatment
- Family and social support

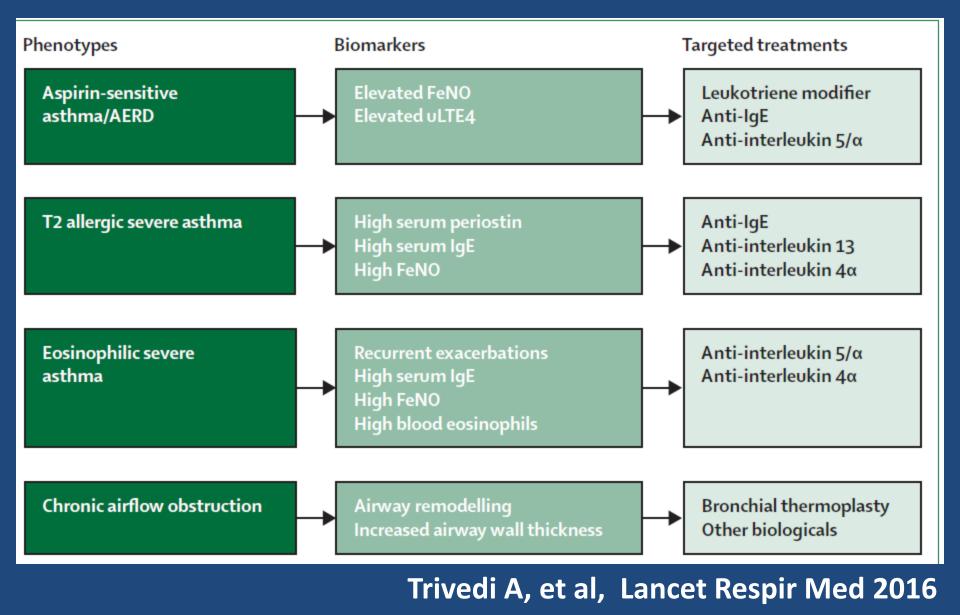
Trait

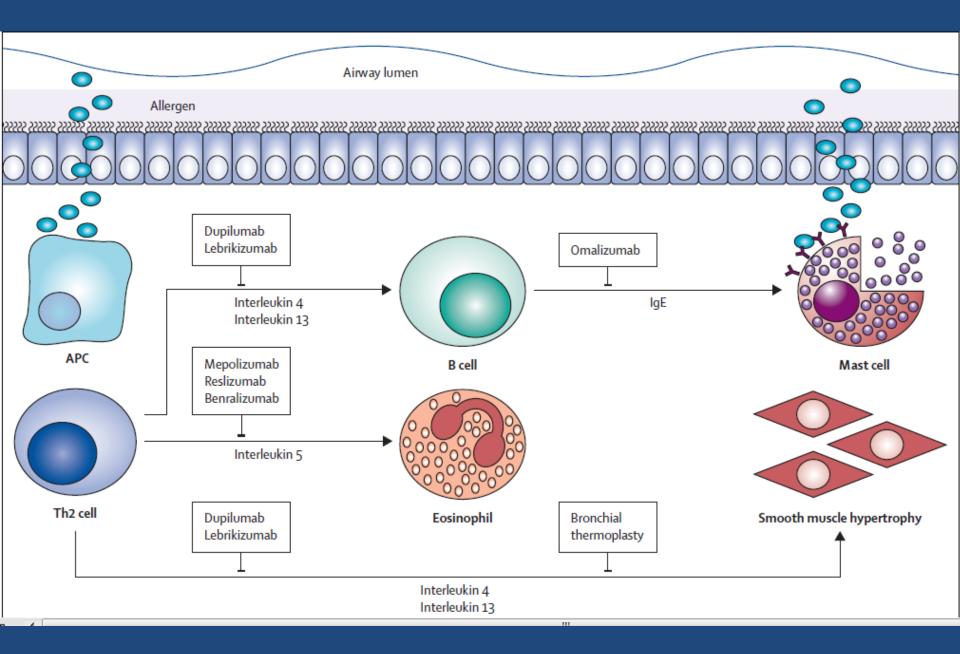
Treatment

Pulmonary treatable traits

Airway smooth muscle contraction Eosinophilic airway inflammation Chronic sputum production Bacterial colonisation Bronchiectasis Cough reflex hypersensitivity Chronic respiratory failure Pulmonary hypertension Emphysema

Extrapulmonary treatable traits

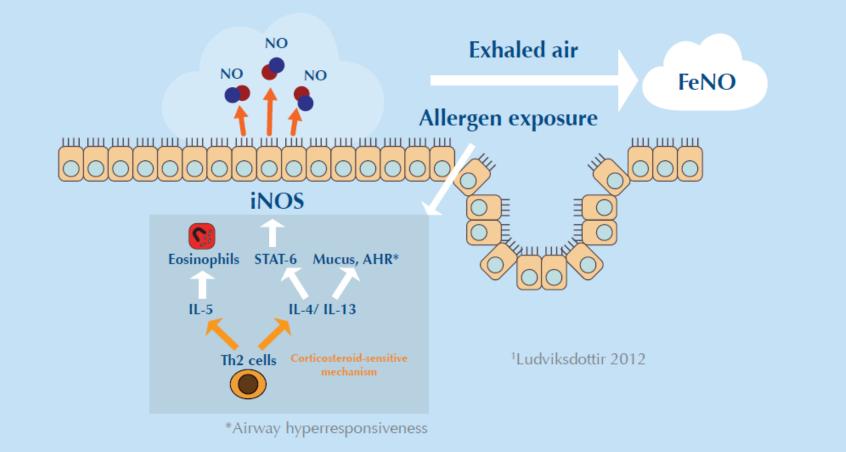

- Rhinosinusitis Deconditioning Cachexia Obesity Cardiovascular disease Vocal cord dysfunction Depression Anxiety Systemic inflammation Treatable behavioural/lifestyle factors Poor inhalation technique Nonadherence to treatment
 - Nonadherence to treatment Smoking Exposure to sensitising agents Side-effects of treatments Polypharmacy Poor family and social support

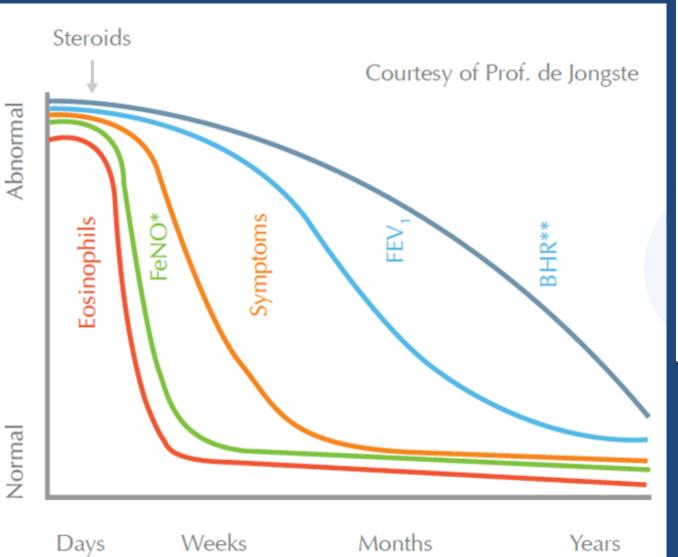

Bronchodilators Corticosteroids/Type 2 biologics Smoking cessation, macrolides, PDE4 inhibitors Macrolides, tetracyclines Macrolides, tetracyclines, nebulised antibiotics/aminoglycosides Gabapentin, P2X3, speech pathology intervention Oxygen/NIV/lung transplant Oxygen/NIV/lung transplant Lung volume reduction/transplant

Topical steroids/surgery Rehabilitation Diet/physical activity Diet/physical activity/bariatric surgery ACE inhibitors/diuretics/β-blockers Speech pathology therapy Cognitive and behavioural therapy Anxiolytics Statins?

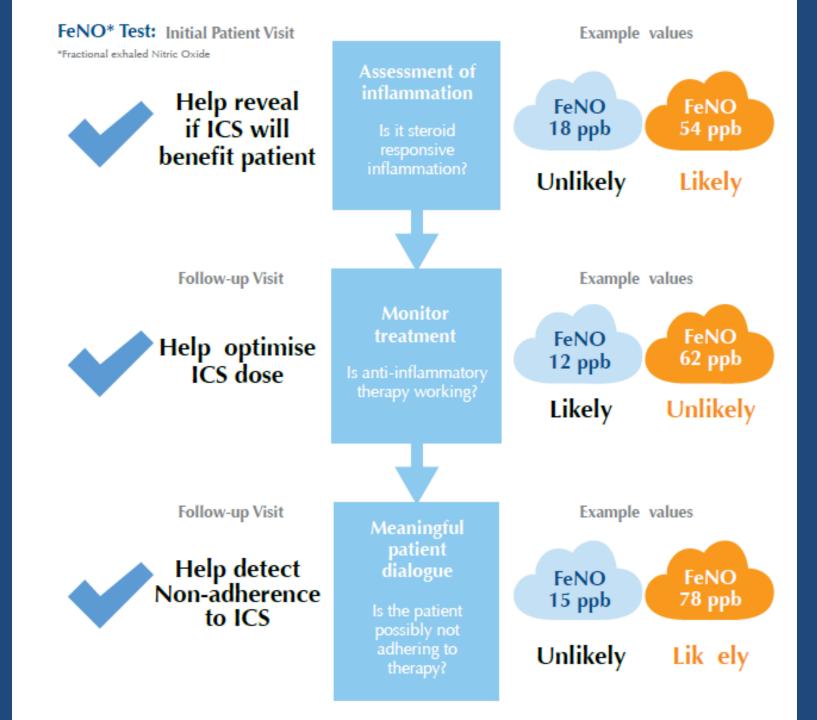
Education Reassurance/education/periodic check-up Cessation support Avoidance/desensitisation Treatment optimisation Medication review Family therapy education/self-management support

Targeted treatments for Asthma

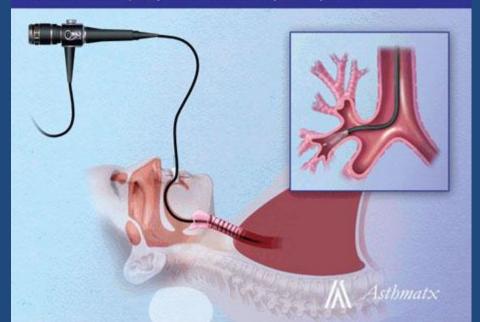



Trivedi A, et al, Lancet Respir Med 2016

FENO, Fractional exhaled Nitric Oxide


- A reliable indicator of corticosteroidresponsive (Th2 driven) airway inflammation
- Monitor anti-inflammatory treatment effectiveness
- FeNO* testing of asthma patients or suspected asthma measures allergic airway inflammation

FeNO IS A BIOMARKER OF INFLAMMATION



Bronchial Thermoplasty

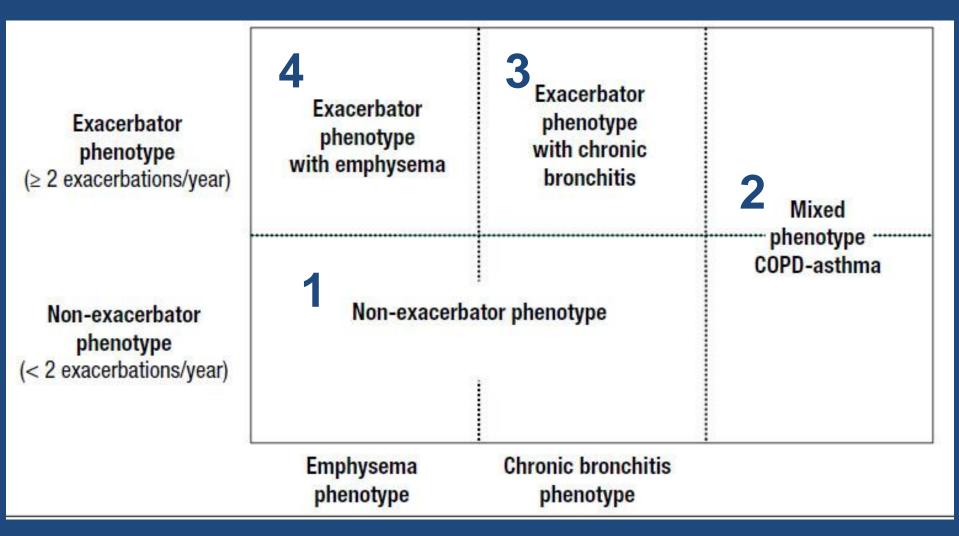
 A non-drug procedure for severe persistent asthma in patients 18 years and older whose asthma is not well-controlled with inhaled corticosteroids and longacting beta-agonists.

Bronchial Thermoplasty[™] with the Alair[®] System by Asthmatx

U.S. Food and Drug Administration (FDA) approved bronchial thermoplasty on April 27, 2010.

Basic principle

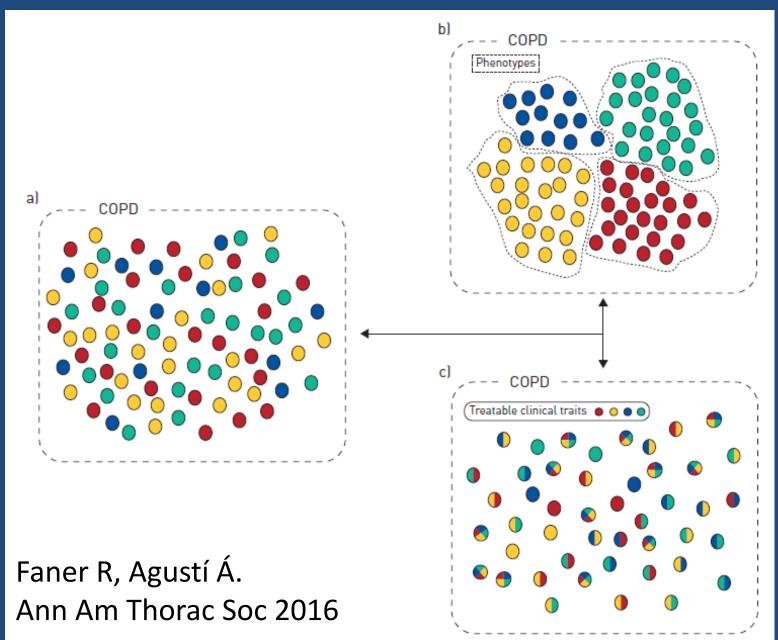
- Delivers thermal energy to the airway wall, in a precisely controlled manner, in order to <u>reduce</u> <u>excessive airway smooth muscle.</u>
- Reducing airway smooth muscle decreases the ability of the airways to constrict, thereby <u>reducing the</u> <u>frequency of asthma attacks.</u>

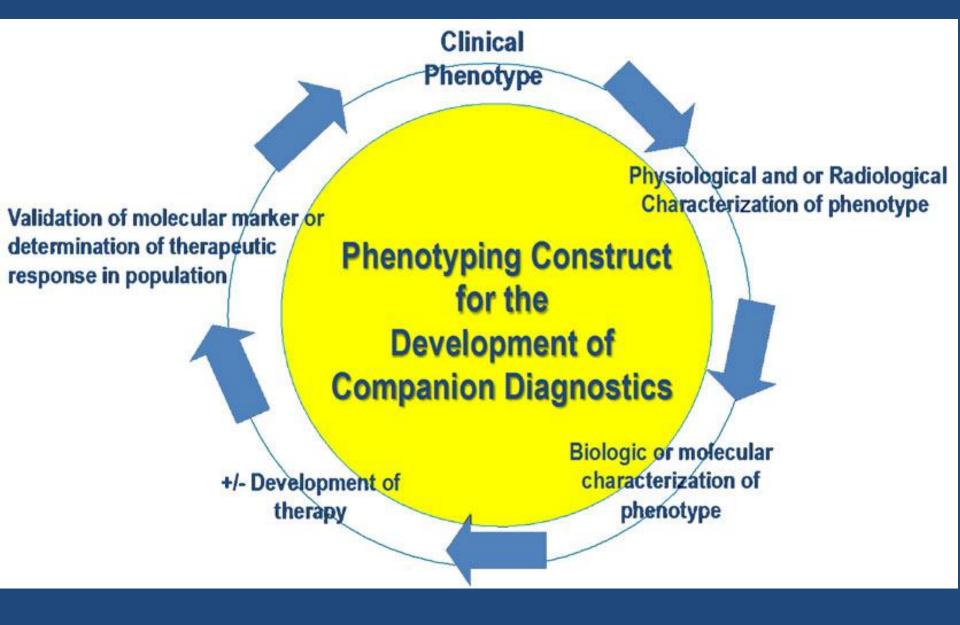


Procedure

- Minimally invasive bronchoscopic procedure
- Performed in three outpatient procedure visits,
- Each treating a different area of the lungs
- Scheduled approximately three weeks apart.
- Should never be applied without proper <u>anti-</u> <u>inflammatory pharmacotherapy in these patients.</u>

Phenotypes of COPD




Spanish Guideline for COPD (GesEPOC). Update 2014

Pharmacological treatment of COPD according to phenotypes

No exacerbator	Overlap COPD-asthma	Exacerbator with emphysema	Exacerbator with chronic bronchitis
		Long-actir	ng bronchodilators
		Inhaled corticosteroids	
			Mucolytics
			PDE ₄ inhibitors
			Macrolides

COPD heterogeneity

Rooney C and Sethi T, Ann. N.Y. Acad. Sci. 2015

Physicians always try to be as precise as possible in relation to the needs of individual patients - Best care for patients

Thank You for Your Attention!

Questions?