Surgery in LBP Orthopaedic perspectives

Professor Myint Thaung Senior Orthopaedic Surgeon Chair, Myanmar Board of Orthopaedics

Disclosure

- This presentation is aiming for academic benefits of GPs and juniors
- No commercial bias nor taking benefits from sponsor company

Learning outcome

- To know the surgical conditions of LBP problems
- To learn when and how to decide surgery
- To learn how patients getting benefits from surgery
- To understand surgical related complications
- To take care of surgical ethics in decision making and after care with patient counseling

Causes more disability worldwide than any other condition

NICE Guidelines Nov 2016

Acute back pain Acute neck pain

- 25% of the population at any one time
- 10 40% can become persistent and disabling
- 8 15% may be able to find a patho anatomical cause
- 10 15% may have a neurological sign
- 1 2% may be serious

Danger Signs in LBP

- Biomedical model
 - Red flags

Bio-psycho-social model
– Yellow flags

• Socio-psycho-biological model

Red Flags from history may need surgery

- Fracture, infection or tumour, neurological deficit
- Major trauma
- Minor trauma in elderly or osteoporosis
- Age
 - -<10 >50
- History of Ca
- Systemic illness
 - Fever, wt. loss, TB
- IVDU
- Immunosuppression
- Progressive sensory loss
- Bladder or bowel dysfunction

Red flags from examination

- Neuro deficit
 - Legs or perineum (saddle anaesthesia)
 - Arms (progressive weakness in fine movement)
- Abdomen AAA --severe pain
- Progressive deformities with lack of loading balance --- unable to sit , stand , walk , line down on bed (Disability in ADL)

Indian Journal of Clinical Practice, Vol. 23, No. 3, August 2012

Table 2. Red Flags for Serious Etiologies of Acute Low Back Pain		
Possible etiology	History findings	Physical examination findings
Cancer	Strong: Cancer metastatic to bone Intermediate: Unexplained weight loss	Weak: Vertebral tenderness, limited spine range of motion
	Weak: Cancer, pain increased or unrelieved by rest	
Cauda equina syndrome	Strong: Bladder or bowel incontinence, urinary retention, progressive motor or sensory loss	Strong: Major motor weakness or sensory deficit, loss of anal sphincter tone, saddle anesthesia
		Weak: Limited spine range of motion
Fracture	Strong: Significant trauma related to age*	Weak: Vertebral tenderness, limited spine range of motion
	Intermediate: Prolonged use of steroids	
	Weak: Age older than 70 years, history of osteoporosis	
Infection	Strong: Severe pain and lumbar spine surgery within the past year	Strong: Fever, urinary tract infection, wound in spine region
	Intermediate: Intravenous drug use, immunosuppression, severe pain and distant lumbar spine surgery	Weak: Vertebral tenderness, limited spine range of motion
	Weak: Pain increased or unrelieved by rest	

Yellow Flags Bio psycho social model

- The belief that pain is harmful or severely disabling
- Fear-avoidance behaviour (avoiding activity because of fear of pain)
- Low mood and social withdrawal
- Expectation that passive treatment rather than active participation will help.

Imaging

- Explain why not
- Explain what else
- High prevalence of Abnormal findings on CT scans/MRIs – *sensitivity & Specificity*
- Disc degeneration 91%
- Disc bulges 56%
- Disc protrusion 32%
- Annular tears 38%

Diagnostic imaging

- Symptom specific level
- Neural specific level
- Plain X ray , Stress film
- Measuring mechanical axis ,alignment ,soft tissue shadow
- CT, MRI, PET, Bone Scan with contrast
- DEXA scanning

treatment and welcome an opportunity to care physicians.

PAIN TREATMENT LADDER*

Neuroablation (chemical or surgical)

Behavioral Modification

Intrathecal Pain Therapy

Long-term Oral Opioids

Neurostimulation

Corrective Surgery

Interventional Techniques

NSAIDs/Neuropathic Pain Agents

* Based on the interventional pain management experience of Dr. John Stamatos.

Aedtronic Pain Therapies may

Judgment on treatment decision

Interpretation and interrelation of following facts :--

- Patient 's chronological sequence of symptoms and duration
- Disability grading and patient' expectation
- Consistent physical signs
- Consistent imaging factors
- Patients' physiology and socio psychology
- Technical and facility based care

When to consider surgery ?

- Unstable mechanics --# dislocations
- Loading and activity related pain—poor ADL
- Progressive neurological symptoms consistent with clinical and radiological findings
- Progressive deformity in growing spine
- Potential problem with spinal balance due to deformity
- Destruction with loss of structure column
- Malignancy which need stability and pain control

Fundamental principles in surgery

- Preserve back muscle integrity
- Preserve motion segment –non fusion technology
- Restore physiological balance—contour alignment correction
- Preserve neuro-biology (neuro safety)
- Reduce post surgical pain –MISS /computer assisted surgery
- Patient safety—the most respectful

Common questions in surgery

- Adequate treatment before surgery ?
- Is there any urgency ?
- Is there any high potential recovery ?
- Is this feasible and safe ?
- Is this one step or stage surgery ?
- What is most realistic expectation ?
- Can this be meet with expectation?

Types of surgery

- Anterior or Posterior or combined
- With or without decompression
- With or without instrumentation
- Fusion or not
- Level of fusion
- Open or MIS

1 of 3

2 of 3

3 of 3

28yrs M fall from motorcycle

HANGMAN FRACTURE type?

Diagnosis?

FIGURE 38-23 Atypical hangman fracture with cord impingement described by Starr and Eismont.

ACES

Metastasis to L4

Initial on level progress to adjacent CVF within 3 months

Progressive kyphosis cause neural compromise

Long posterior fixation

Post op X ray

Pott's spine

Cervical spine TB C5-6

Plain x-rays

 Require 30–70% vertebral body destruction before evident on plain radiographs

Radiological inve

Bone scan

- Sensitive but nonspecific
- False negatives with rapidly growing (lung, kidney) or lytic tumors (myeloma, breast)

- Myelogram largely superseded and replaced by MRI
- May be useful in the presence of instrumentation

CT best for identifying bony involvement/definition

Vertebral haemangioma

Haemangiopericytoma of L1

PET CT useful for staging and evaluation of recurrence

Radiological investiga

MRI the most sensitive and specific investigation

 Displays extent of bony and soft-tise involvement

Renal cell carcinoma

Multiple secondary breast deposits

Biopsy

- Percutaneous needle biopsy
 - Diagnostic yield influenced by sample size
 - 2 mm or greater diameter 90%
 - < 2 mm diagnostic yield decreased to ~ 50%</p>
 - Track should follow anatomical planes and be included

Radiation therapy

- Standard external beam radiotherapy
- Intensity modulated radiotherapy (IMRT)
- Proton beam radiotherapy
- Sninal stereotactic radiosurgery

- Workup identified mass in the right kidney
- No other metastatic lesions
 identified
- What now?

- Biopsy confirmed renal cell carcinoma
- What treatment would you recommend?

Considerations for surgery

- Disease factors :--
- Mechanical pain which is unresponsive to drugs and activity modification –minimal 3 months eg PID , degenerated disc with SC compression
- Mal-alignment of the spinal column –saggital and or coronal with painful instability and loss of body balance eg listhesis , scoliosis

Consideration for surgery

- Patient factors :--
- Patient 's physiology with risk stratifications
- Severe intolerable pain
- Cosmesis-deformity
- Realistic functional expectation --activity

Consideration for surgery

- **Spinal infection** :--TB or Pyogenic with active lesion and SC / nerve root compression
- **Spinal tumor** :-- Intra or extradural / Intra or extra myelinal with neural deficit
- Secondary tumor with severe pain malignant pain and disability with reduced quality of life
- **Trauma** with unstable fracture and or dislocation with or with out SC and nerve root injury

Considerations for surgery

- System factor :--
- Facility based system care
- Team building capacity --- imaging , anesthesia , rehab , intensive care , oncology , medical specialities , social and palliative care , pain care specialist , infectious disease specialist , psychiatrist etc .
- surgeon's limitation in experiences
- New technology eg . MISS

Accessible technology

Introduce special retractor system

ALIF

Access technology

- Applicable Spine Endoscopy
 - Endoscope (in a model) mounted onto the ring
 - Microscopy

Implant technology

Sextant

Rod insertion system surgical techniques

Bone graft technology

- Specialized instrument (harvesting tool)
 - Adjacent vertebra not from iliac crest

Sharp trephine

Fill with Ca phosphate

Case example 45 YO, Spondylolisthesis L4L5

MIS TLIF

Case example 60 YO, PID with stenosis L4L5, L5S1

Endoscopic decompression unilateral biportal endoscopy

Lumbosacral surgery

• Retroperitoneal mini approach (L1 to S1)

Lumbosacral surgery

- Retroperitoneal mini- approach (L1 to S1)
 - Special Hohman retractors

Lumbosacral surgery

• Posterior surgery (PLIF, TLIF/ALIF)

Thoracic surgery

- Mini -thoracotomy with Syn frame and endoscope
 - Special thoracic blades and Hohman retractors

Thoracic surgery

 Anterolateral decompression for thoracic disc herniation

Cervical spine surgery

- Anterior and posterior cervical surgery

 Syn frame and MISS retractors
 - Tumor surgery

common complications of MIS

- Durotomy –most common incidence
- Symptomatic CSF leak
- Inadequate decompression
- New neurologic deficit
- Instrument malfunction
- Wound infection

Radiographic evaluation of age of fracture

- Plain films
- MRI

Low signal T1 High signal T2 High signal STIR

Best indicator of age is the history.

Bone Scan

- Not as commonly used as MRI
- Been shown to have a 93% predictive value in vertebroplasty / kyphoplasty
- May be abnormal when MRI is normal

DX& SC&N OF OSTEOPOROSIS

Image not for diagnostic use Total BMD CV 1.0%

DXA Scan Information:

Example of a DXA scan showing a T score lower than -2.5 indicating osteoporosis

Results Summary:

Total BMD: Peak reference: Age matched:		0.766 g/cm ²					
		73% 86%		T score: Z score:		-2.6 -1.1	3
Region	Area [cm ²]	BMC [g]	BMD [g/cm ²]	T score	%PR	Z score	%AM
LI	12.06	7.45	0.617	-2.8	67%	-1.5	79%
L2	13.15	10.12	0.770	-2.3	75%	-0.9	88%
L3	12.71	10.65	0.838	-2.2	77%	-0.7	91%
L4	14.66	12.08	0.824	-2.7	74%	-1.1	87%
Total:	52.59	40.30	0.766	-2.6	73%	-1.1	86%

3-Inflate Balloon Tamp

4-Fill with a "support cast"

Indication

- Osteolytic fracture
- Metastatic bone fractures

Accessory

Post op Day 1 KYPHOPLASTY

Vertebroplasty with Fusion

Multi levels Vertebroplasty

Success of surgery

Success of surgery = pathology x technique divided by Patient's Biology

Wisdom in judgment and Realistic expectation is most important —— Patient centered Team Capacity and Facility based practice / system based practice

Complexity in success of surgery

- Not all the bad X ray are symptomatic
- Not all the bad x ray need surgery
- Not all the surgery has permanent pain free result
- Recurrent back pain and disability problem may be likely –redo surgery ?
- Balance between subjective and objective
- Clear information and understanding of patient

Spine – Orthopaedic speciality

Myanmar Spine Surgery Society

- Technical and service development in Spine Unit of YOH and MOH → 500 cases operated per year Trained spine specialists (12)
- Collaboration with neurosurgeon , rehab and physiatrist , imaging specialist , pain specialist , oncologist , anaesthesiologist , histopathologist collaboration with AO Spine , APSS, AO EA, France , Switzerland , Japan , Korea , USA

Fully equipped Spine Centre Yangon

50 bed

Since last 20 years back , Prof Kyaw Myint Naing continuously developing spine discipline

SPINE SIG (Myanmar)

Take home message

- Not all the spinal disorders need surgery
- Not all the surgery meet patient expectations
- MIS technique may have promising results with expert hands
- Choose reliable spine center where good team based capacity is available
- Proper referral system is mandatory
- Community based information communication and rehabilitation is necessary

Thank You for Your Attention

