Measurement of Disease Frequency

Occurrence and Trends

Module 1

Measurement of Disease for Outbreaks and Trends

- Measurement of disease burden
- Prevalence, Proportion, \% etc
- Measurement of disease occurrence
- Incidence, death rate,
- Measurement of association (risk vs outcome)
- Odds Ratio, RR
- Measurement of Trends and Distributions**
- Dose - response, Trends over time cohort (APC)
- Time Series etc.

Measurement of disease burden

- Count (number) and unit of count (such as aggregate number - group, cluster, flock etc)
- Count and proportion (number of case per survey population, \%, ratio - m:f)
- Prevalence (magnitude)

Prevalence

Prevalence = (point)

Number of existing cases at a point of time Size of the population at a point of time

No. of existing cases + new cases during a period of time

Prevalence = period

Average size of the population at the period of time

Prevalence (point)

Prevalence $=$ (point)

$$
\begin{aligned}
& =\frac{36}{3200 \text { villager }} \\
& =\quad 0.01125 \quad \text { Or } \quad 1.12 \text { person in } 100 \text { people }
\end{aligned}
$$

Size of the population of the village

Prevalence

Prevalence $=\underline{\text { No. of existing cases }+ \text { new cases during a period of time }}$
period
Average size of the population at the period of time
$=\frac{36+12}{3200 \text { villager }}$
$=\frac{48}{3400}$
$=\quad 0.0141 \quad$ Or 1.4 in 100 villager

Measurement of disease occurrence

(incidence rate, death rate etc.

New cases occur in an observed period (1 year)
Incidence (rate) $=\frac{\text { Size of population at risk who stay in the area in } 1 \text { year }}{}$

Common measurement in descriptive epidemiology

- Count
- Ratio (A:B) such as M:F
- Proportion (of Total, of school attendant)
- Percentage \%
- Prevalence
- Rate (of change) - incidence
- Case Fatality Rate : CFR) - proportion
- Summary of data variable (Mean, Median, Mode)

Number of patients with "D" disease reported from all hospitals in Province/Division 'M' by week, in 201X

Hospita I Area	Tot a	1	2	3	4	5	6	7	8	9	10		1	13	14	1	1		18	12 	
Provine ial H	1778	11	2	$1{ }^{1}$	$\begin{aligned} & 010 \\ & 1 \end{aligned}$	11	2^{11}	1	$\begin{array}{\|l\|l} & 10 \\ 0 \end{array}$	12	712		9^{8}	5^{8}	70	3^{6}	38	65	6	87	
Hosp A	163					28	31	2	28	13	12	9	5	1	1						
Hosp B	5	1	1	1		1							1								
Hosp C	169	24	1	6	422	25	23	2	04	1		2			16						
Hosp D	656	44	3	7	844	27	21	4	324	24	19	1	4^{3}	9^{2}	843	4	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	534	3	9^{2}	8
Hosp E	466	19	3	3^{3}	638	28	20	4	023	16	21	2	7	6^{2}	121	1	4^{2}	718	2	4	2
Hosp F	226	17	1	7	23	47	26	4	122	2											
Hosp G	242	27	1	$8{ }^{2}$	533	21	20	3	318	28	17	1									

Understand sources of data and how data collected

- Definition of case required for notification
- Surveillance and reporting system (and requirement - such as priority/urgent etc)
- Reporting Persons, organization
- Timeliness
- Completion
- Evaluation and supervision
- Technology

Previous slide content show

- Count per week
- Count of cases among different hospital/area
- No report and missing data
- Incomplete information in some data
- No information, no data - difficult to analyze or interpretation
- No population in each area make it hard to compare the problem
- Can we say something about the trends of disease?

John Snow : Observation and study of Cholera Outbreak, London 1854

Cholera cases, rate per HH By water supplied company, London 1854.

Case per

Tap water Supplied company

No. HH

cases

Southwark
Company

Lamberth Company
26,107
98
37

Rest of London
256,423
1,422
59

Measure of disease transmission

การถ่ายทอดโรค (Disease

Index - first case identified Transmission)

* Primary - case that brings the infection into a population
* Secondary - infected by a primary case
* Tertiary - infected by a secondary case

Transmission: Reproductive Number

Basic Reproductive Number (R zero)

Secondary cases occurred as a result of exposure (contact) to indexed cases or previous case
Ro = between 1-2 from this example

After an ILI index case ill in families no. of new cases sick in 1 incubation period

Size of families	New case occur	Index to new case ratio
5	2	$1: 2$
4	2	$1: 2$
3	1	$1: 1$
6	3	$1: 3$

Estimated Ro

in selected infectious disease

- Seasonal Influenza (2-4)
- Pandemic A/H1N1 (2-5)
- H5N1 (0.5-2)
- SARs (3-7****)
- Tuberculosis (1-2)***
- MERS (0.7-4**)
- Ebola (1-5**)
- HFMD (1-6**)
** depend on settings, family size, contact methods, procedure

First MERS in Korea and transmission

Transmission Relationships

Measurement of association (risk vs outcome)
 Odds Ratio, RR

Terminology

- Variable (things with information of interest: Sex, age, Blood sugar, Infection (Y/N), eat food A, bite by rabid dog, vaccination) (y/n)......etc)
- Association (possible relationship of x and y)
- Correlation (how x and y go together) (+/-)
- Some association can be cause-effect relationship

Measurement of association (risk vs outcome)
 Odds Ratio, RR

Association

- What is Odd and Odds Ration
$a: b$ is Odd of $X(c: d$ is another odd of Y)
X : Y is Odds Ratio
- What is Relative Risk (similar concept
"Studies showed "Drink alcohol" associated with increase in road accident by 3 times"

Calculation format Odd, Odds Ratio

	Accident	No accident		
Drinking "alcohol" Over $75 \mathrm{mg} \%$	a	b	a+b	
No alcohol	c			
		a+c		

	Accident	No accident	
Drinking "alcohol" Over $75 \mathrm{mg} \%$	a	b	$\mathrm{a}+\mathrm{b}$
No alcohol	c	d	$\mathrm{c}+\mathrm{d}$
	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{N}=$ $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

Odd of accident in drinking $=a / b$

Odd of accident in No drinking $=\mathrm{c} / \mathrm{d}$

Odd Ratio of Alcohol in accident $=(\mathrm{a} / \mathrm{b}) /(\mathrm{c} / \mathrm{d}) \quad=\mathrm{a}^{*} \mathrm{~d} / \mathrm{b}^{*} \mathrm{c}$

+ Calculate 95\% Confident Intervals
ORs = number

	Accident	No accident	
Drinking "alcohol" Over $75 \mathrm{mg} \%$	50	500	550
No alcohol	5	1200	1205
	55	1700	1755

Odd of accident in drinking $=a / b=50 / 500=0.1$
Odd of accident in No drinking $=c / d=5 / 1200=0.00416$

Odd Ratio of Alcohol in accident $=(0.1) /(0.00416)=24.04$ times

+ Calculate 95\% Confident Intervals
ORs = number

Calculation format RR, RRs Ratio

	Case Measles	Normal (child) no illness	
MMR vaccination	a	b	$\mathrm{a}+\mathrm{b}$
No MMR vaccination	c	d	$\mathrm{c}+\mathrm{d}$
	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{N}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

	Case Measles	Normal (child) no illness	
MMR vaccination	a	b	$\mathrm{a}+\mathrm{b}$
No MMR vaccination	c	d	$\mathrm{c}+\mathrm{d}$
	$\mathrm{a}+\mathrm{c}$	$\mathrm{b}+\mathrm{d}$	$\mathrm{N}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$

RR of disease in vaccination $=a / a+b$ $R R$ of disease in non-vaccination $=c / c+d$

RRs Ratio is $=a(a+b) /(c /(c+d))$

	Case Measles	Normal (child) no illness	
MMR vaccination	5	400	405
No MMR vaccination	28	300	328
	33	730	763

RR of disease in vaccination $=a / a+b=5 / 405=0.012$
$R R$ of disease in non-vaccination $=c / c+d=28 / 328=0.0853$

$$
\begin{aligned}
\text { RRs Ratio is } & =a(a+b) /(c /(c+d)) \\
& =0.012 / 0.0853=0.14
\end{aligned}
$$

Cause-effect Association

- Strength of association (high RRs, Ors)
- Consistency
- Specificity
- Temporal relation (A happened before disease)
- Biological Plausibility
- Dose-response relationship
- Coherence
- Experiment support
- Analogy **

Q/A

Thank you

For use in future

Trends Analysis (advance)

For your interest only

Time series analysis

Temperature, NE Thailand

Main composition of determinants of a Time Series

- Trend: linear, curvinear, moving average
- Oscillation (cosine function)
- Harmonic terms e.g. cos(a), cos(2a)
- Starting points e.g. $\cos (m+a), \cos (n+2 a)$
- Autoregressive effect
- Preceding status has effects on the current one.
- Optionally other explanatory independent terms e.g. temperature, rainfalls, which are beyond the trend and cyclical effects
- Random errors

Decomposition of additive time series

Forecasting malaria in Yala

$$
\begin{aligned}
x_{t}= & 277.21+94.42 \cos (2 \pi t \times 0.08)-167.64 \sin (2 \pi t \times 0.08) \\
& +69.52 \cos (2 \pi t \times 0.02)+167.04 \sin (2 \pi t \times 0.02)
\end{aligned}
$$

ารเปลี่ยนแปลงหลังการระบาดใหญ่ ๕ ปี ของไข้หวัดใหญ่สายพันธ์ใหม่ 20

Two week period graph of Reporting Total Influenza, A/H1N1/2009, A/H3, Thailand 2009-2014

Age-Period-Cohort (APC)

- Age - risk of disease depend on age such as
- Low immunity in children
- Exposure to chemical, hormone change
- Age related disease, elderly less immunity etc
- Period : certain period living aspect change (60s, 80s, 90s, 2000s, 2010....)
- Cohort : Birth cohort experienced different era/period
- Interaction for risk factors

Female breast cancer in Thailand

Year

Male colo-rectal cancer in Thailand

Tobacco consumption and lung cancer in Australia

The End - Thank you

