## Measurement of Disease Frequency Occurrence and Trends

Module 1

Measurement of Disease for Outbreaks and Trends

- Measurement of disease burden
  - Prevalence, Proportion, % etc
- Measurement of <u>disease occurrence</u>
  - Incidence, death rate,
- Measurement of <u>association (risk vs outcome)</u>
  - Odds Ratio, RR
- Measurement of <u>Trends and Distributions\*\*</u>
  - Dose response, Trends over time cohort (APC)
  - Time Series etc.

### Measurement of disease burden

- <u>Count</u> (number) and unit of count (such as aggregate number group, cluster, flock etc)
- <u>Count and proportion</u> (number of case per survey population, %, ratio – m:f)
- <u>Prevalence</u> (magnitude)

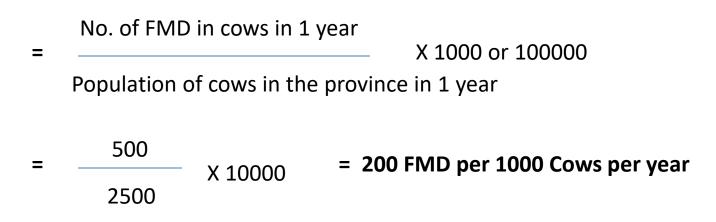
### Prevalence

| Prevalence = | Number of existing cases at a point of time                                                                       |
|--------------|-------------------------------------------------------------------------------------------------------------------|
| (point)      | Size of the population at a point of time                                                                         |
| Prevalence = | No. of existing cases + new cases during a period of time<br>Average size of the population at the period of time |

## Prevalence (point)

| Prevalence = | Number of DM cases in the survey of a village |    |                           |  |  |  |
|--------------|-----------------------------------------------|----|---------------------------|--|--|--|
| (point)      | Size of the population of the village         |    |                           |  |  |  |
| =            | 36                                            |    |                           |  |  |  |
|              | 3200 village                                  |    |                           |  |  |  |
| =            | 0.01125                                       | Or | 1.12 person in 100 people |  |  |  |

### Prevalence


| Prevalence = | No. of existing cases + new cases during a period of time |  |  |  |  |
|--------------|-----------------------------------------------------------|--|--|--|--|
| period       | Average size of the population at the period of time      |  |  |  |  |
| _            | 36 + 12 In 6 months period                                |  |  |  |  |
| =            | = 3200 villager + 200 (birth and move in, minus died)     |  |  |  |  |
| =            | 48                                                        |  |  |  |  |
|              | 3400                                                      |  |  |  |  |
| =            | 0.0141 Or 1.4 in 100 villager                             |  |  |  |  |

### Measurement of disease occurrence

(incidence rate, death rate etc.



Size of population at risk who stay in the area in 1 year



Incidence is rate of change : unit of calculation is per time (t minus 1)

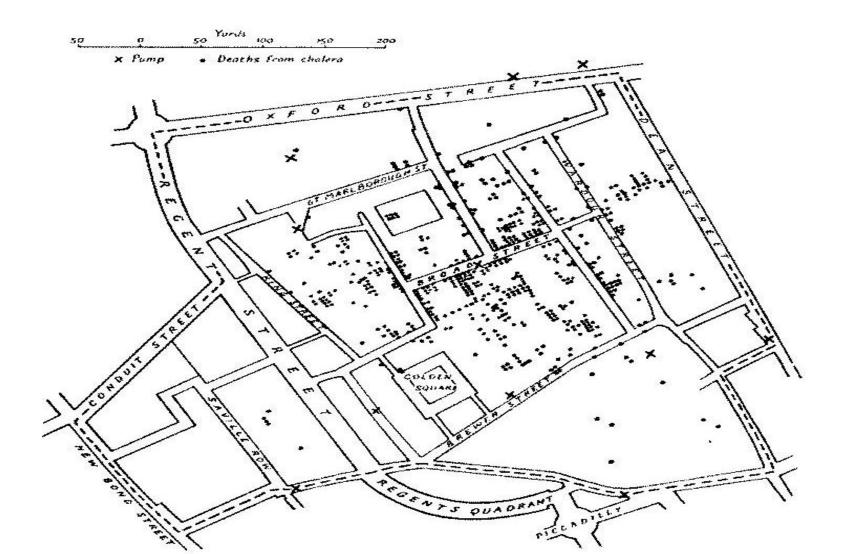
#### **Common measurement in descriptive epidemiology**

#### Count

- Ratio (A:B) such as M:F
- Proportion (of Total, of school attendant)
- Percentage %
- Prevalence
- Rate (of change) incidence
- Case Fatality Rate : CFR) proportion
- Summary of data variable (Mean, Median, Mode)

# Number of patients with "D" disease reported from all hospitals in Province/Division 'M' by **Week**, in 201X

| Hospita<br>I        | Tot<br>a |    |        |             |          |         |         |        |          |         |         | 1      | 1      | 1      |         | 1      | 1      |      | 1 | 1      | 2 |
|---------------------|----------|----|--------|-------------|----------|---------|---------|--------|----------|---------|---------|--------|--------|--------|---------|--------|--------|------|---|--------|---|
| Area                | l        | 1  | 2      | 3           | 4        | 5       | 6       | 7      | 8        | 9       | 10      | 1      |        | 2 3    | 14      | 5      |        | 5 17 | 8 |        |   |
| Provine<br>ial<br>H | 177<br>8 | 11 | 1<br>2 | 1<br>1<br>2 | 010<br>1 | 11<br>1 | 11<br>2 | 1<br>6 | 010<br>0 | 12<br>1 | 12<br>7 | 8<br>3 | 8<br>9 | 8<br>5 | 10<br>7 | 6<br>3 | 8<br>3 | 675  | 6 | 87     |   |
| Hosp A              | 163      |    |        |             |          | 28      | 31      | 2      | 628      | 13      | 12      | 9      | 5      | 1      | 1       |        |        |      |   |        |   |
| Hosp B              | 5        | 1  | 1      | 1           |          | 1       |         |        |          |         |         |        | 1      |        |         |        |        |      |   |        |   |
| Hosp C              | 169      | 24 | 1      | 1<br>6      | 422      | 25      | 23      | 2      | 04       | 1       |         | 2      |        |        | 16      |        |        |      |   |        |   |
| Hosp D              | 656      | 44 | 3      | 4<br>7      | 844      | 27      | 21      | 4      | 324      | 24      | 19      | 1      | 3<br>4 | 2<br>9 | 843     | 4      | 4<br>1 | 534  | 3 | 2<br>9 | 8 |
| Hosp E              | 466      | 19 | 3      | 3<br>3      | 638      | 28      | 20      | 4      | 023      | 16      | 21      | 2      | 1<br>7 | 2<br>6 | 121     | 1      | 2<br>4 | 718  | 2 | 2<br>4 | 2 |
| Hosp F              | 226      | 17 | 1      | 2<br>7      | 623      | 47      | 26      | 4      | 122      | 2       |         |        |        |        |         |        |        |      |   |        |   |
| Hosp G              | 242      | 27 | 1      | 2<br>8      | 533      | 21      | 20      | 3      | 318      | 28      | 17      | 1      |        |        |         |        |        |      |   |        |   |


Understand sources of data and how data collected

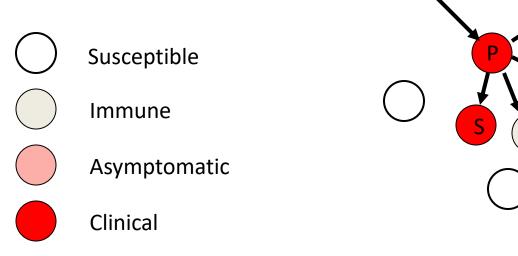
- Definition of case required for notification
- Surveillance and reporting system (and requirement – such as priority/urgent etc)
- Reporting Persons, organization
- Timeliness
- Completion
- Evaluation and supervision
- Technology

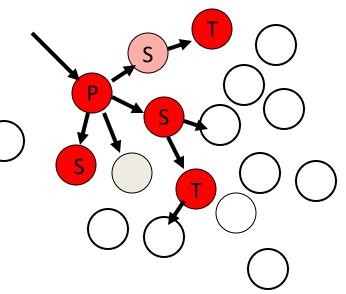
## Previous slide content show

- Count per week
- Count of cases among different hospital/area
- No report and missing data
- Incomplete information in some data
- No information, no data difficult to analyze or interpretation
- No population in each area make it hard to compare the problem
- Can we say something about the trends of disease?

### John Snow : Observation and study of Cholera Outbreak, London 1854




### Cholera cases, rate per HH By water supplied company, London 1854.


| Tap water<br>Supplied company   | No. HH  | cases | Case per<br>10000 HH |
|---------------------------------|---------|-------|----------------------|
| Southwark & Vauxhall<br>Company | 40,046  | 1,263 | 315                  |
| Lamberth Company                | 26,107  | 98    | 37                   |
| Rest of London                  | 256,423 | 1,422 | 59                   |

### Measure of disease transmission

# การถ่ายทอดโรค (Disease Index – first case identified **Transmission**)

- Primary case that brings the infection into a population
- Secondary infected by a primary case
- Tertiary infected by a secondary case





#### Transmission: Reproductive Number

**Basic Reproductive Number (R zero)** 

Secondary cases occurred as a result of exposure (contact) to indexed cases or previous case

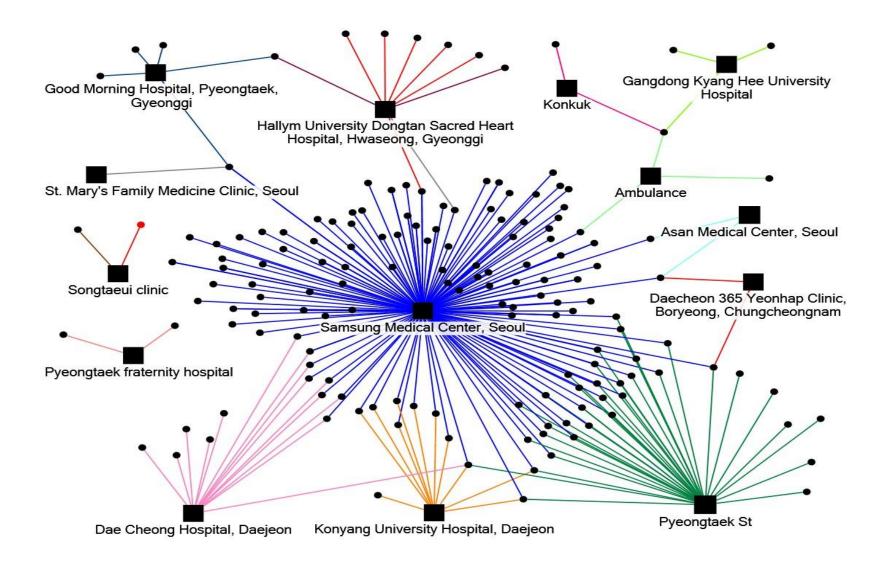
Ro = between 1-2 from this example

#### After an ILI index case ill in families no. of new cases sick in 1 incubation period

| Size of families | New case occur | Index to new case ratio |
|------------------|----------------|-------------------------|
| 5                | 2              | 1:2                     |
| 4                | 2              | 1:2                     |
| 3                | 1              | 1:1                     |
| 6                | 3              | 1:3                     |

### **Estimated Ro**

in selected infectious disease


- Seasonal Influenza (2-4)
- Pandemic A/H1N1 (2-5)
- H5N1 (0.5-2)
- SARs (3-7\*\*\*)
- Tuberculosis (1-2)\*\*\*
- MERS (0.7-4\*\*)
- Ebola (1-5\*\*)
- HFMD (1-6\*\*)

\*\* depend on settings, family size, contact methods, procedure

#### First MERS in Korea and transmission



### **Transmission Relationships**



Measurement of <u>association (risk vs outcome)</u> Odds Ratio, RR

#### Terminology

- <u>Variable</u> (things with information of interest : Sex, age, Blood sugar, Infection (Y/N), eat food A, bite by rabid dog, vaccination) (y/n).....etc)
- <u>Association</u> (possible relationship of x and y)
- <u>Correlation</u> (how x and y go together) (+/-)
- Some association can be <u>cause-effect</u> <u>relationship</u>

#### Measurement of <u>association (risk vs outcome)</u> Odds Ratio, RR

#### Association

- What is Odd and Odds Ration
  - a:b is Odd of X ( c:d is another odd of Y)
  - X:Y is Odds Ratio
- What is Relative Risk (similar concept

"Studies showed "Drink alcohol" associated with increase in road accident by 3 times"

### Calculation format Odd, Odds Ratio

|                                   | Accident | No accident |             |
|-----------------------------------|----------|-------------|-------------|
| Drinking "alcohol"<br>Over 75 mg% | а        | b           | a+b         |
| No alcohol                        | С        | d           | c+d         |
|                                   | a+c      | b+d         | N = a+b+c+d |

|                                   | Accident | No accident |                |
|-----------------------------------|----------|-------------|----------------|
| Drinking "alcohol"<br>Over 75 mg% | а        | b           | a+b            |
| No alcohol                        | С        | d           | c+d            |
|                                   | a+c      | b+d         | N =<br>a+b+c+d |

#### Odd of accident in drinking = a/b

#### Odd of accident in No drinking = c/d

Odd Ratio of Alcohol in accident = (a/b)/(c/d) = a\*d/b\*c

+ Calculate 95% Confident Intervals

ORs = number

|                                   | Accident | No accident |      |
|-----------------------------------|----------|-------------|------|
| Drinking "alcohol"<br>Over 75 mg% | 50       | 500         | 550  |
| No alcohol                        | 5        | 1200        | 1205 |
|                                   | 55       | 1700        | 1755 |

Odd of accident in drinking = a/b = 50/500 = 0.1

Odd of accident in No drinking = c/d = 5/1200 = 0.00416

Odd Ratio of Alcohol in accident = (0.1)/(0.00416) = 24.04 times + Calculate 95% Confident Intervals

#### Calculation format RR, RRs Ratio

|                       | Case Measles | Normal (child) no<br>illness |             |
|-----------------------|--------------|------------------------------|-------------|
| MMR vaccination       | а            | b                            | a+b         |
| No MMR<br>vaccination | С            | d                            | c+d         |
|                       | a+c          | b+d                          | N = a+b+c+d |

|                       | Case Measles | Normal (child) no<br>illness |             |
|-----------------------|--------------|------------------------------|-------------|
| MMR vaccination       | а            | b                            | a+b         |
| No MMR<br>vaccination | С            | d                            | c+d         |
|                       | a+c          | b+d                          | N = a+b+c+d |

RR of disease in vaccination = a/a+bRR of disease in non-vaccination = c/c+d

RRs Ratio is = a(a+b)/(c /(c+d))

|                       | Case Measles | Normal (child) no<br>illness |     |
|-----------------------|--------------|------------------------------|-----|
| MMR vaccination       | 5            | 400                          | 405 |
| No MMR<br>vaccination | 28           | 300                          | 328 |
|                       | 33           | 730                          | 763 |

RR of disease in vaccination = a/a+b = 5/405 = 0.012

RR of disease in non-vaccination = c/c+d = 28/328 = 0.0853

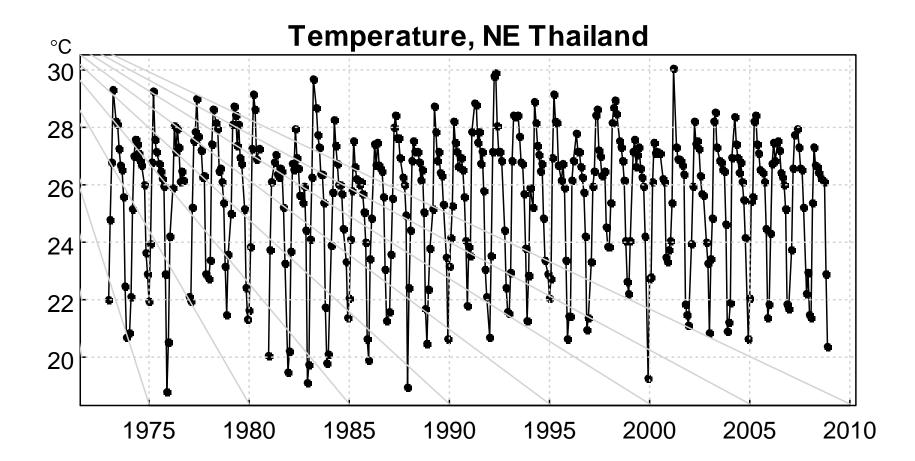
RRs Ratio is = a(a+b)/(c /(c+d)) = 0.012/0.0853 = 0.14

MMR vaccination has 7.1 time protective effect or approximately 76 % efficacy

### **Cause-effect Association**

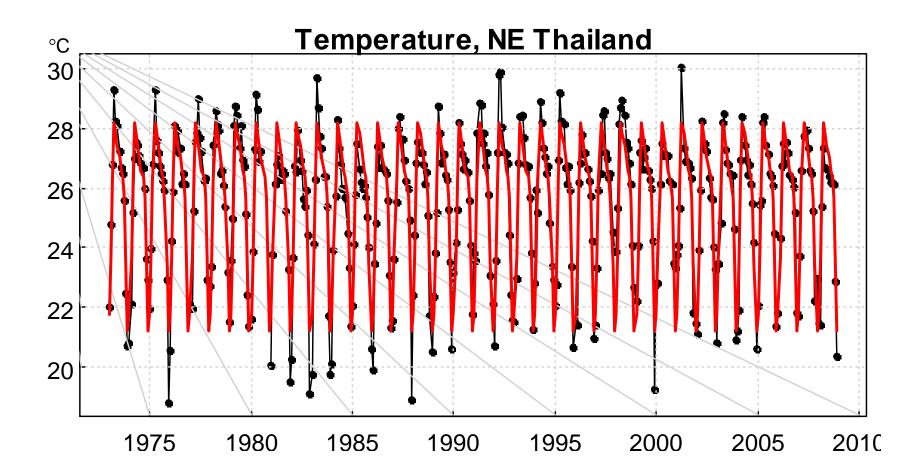
- Strength of association (high RRs, Ors)
- Consistency
- Specificity
- Temporal relation (A happened before disease)
- Biological Plausibility
- Dose-response relationship
- Coherence
- Experiment support
- Analogy \*\*



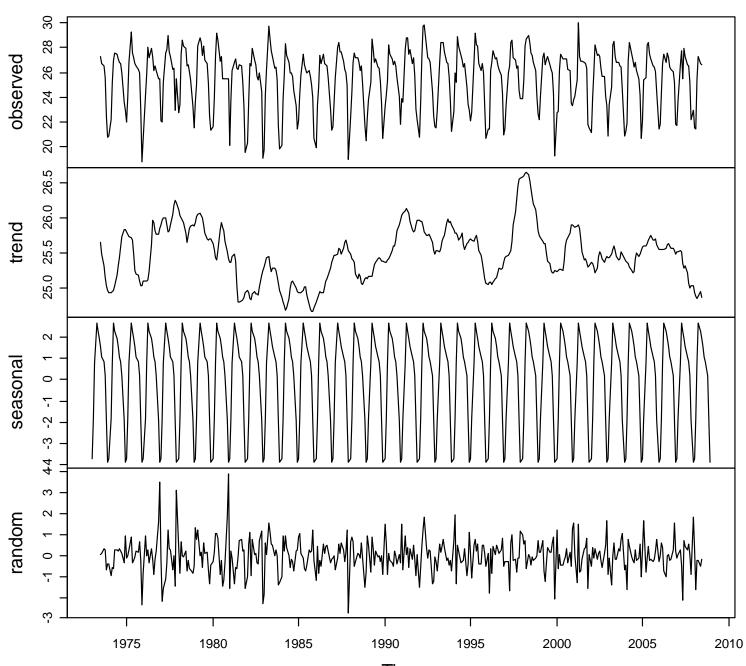

Thank you

For use in future

### Trends Analysis (advance)


For your interest only

### Time series analysis

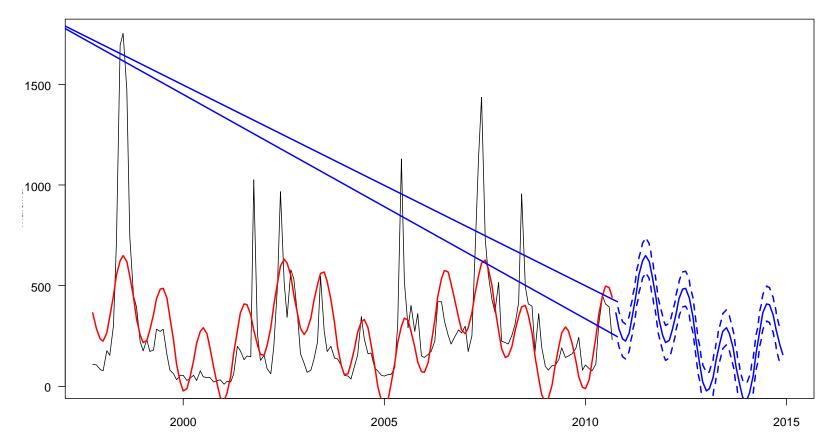



### Main composition of determinants of a Time Series

- <u>Trend:</u> linear, curvinear, moving average
- **Oscillation** (cosine function)
  - Harmonic terms e.g. cos(a), cos(2a)
  - Starting points e.g. cos(m+a), cos(n+2a)
- <u>Autoregressive effect</u>
  - Preceding status has effects on the current one.
- Optionally other explanatory independent terms e.g. temperature, rainfalls, which are beyond the trend and cyclical effects
- <u>Random errors</u>

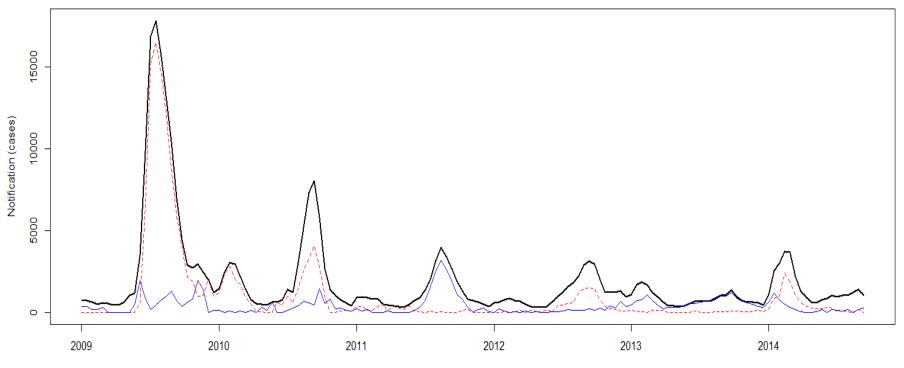


Analysis : Output from R program - red line show trend of temperature with seasonal (time) variation




#### Decomposition of additive time series

Time

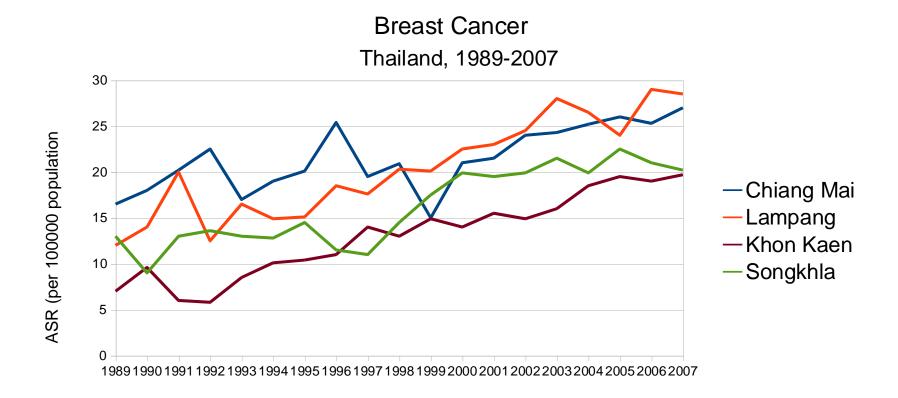

### Forecasting malaria in Yala

 $x_t = 277.21 + 94.42 \cos(2\pi t \times 0.08) - 167.64 \sin(2\pi t \times 0.08) + 69.52 \cos(2\pi t \times 0.02) + 167.04 \sin(2\pi t \times 0.02)$ 



#### ารเปลี่ยนแปลงหลังการระบาดใหญ่ ๕ ปี ของไข้หวัดใหญ่สายพันธ์ใหม่ 20

Two week period graph of Reporting Total Influenza, A/H1N1/2009, A/H3, Thailand 2009-2014

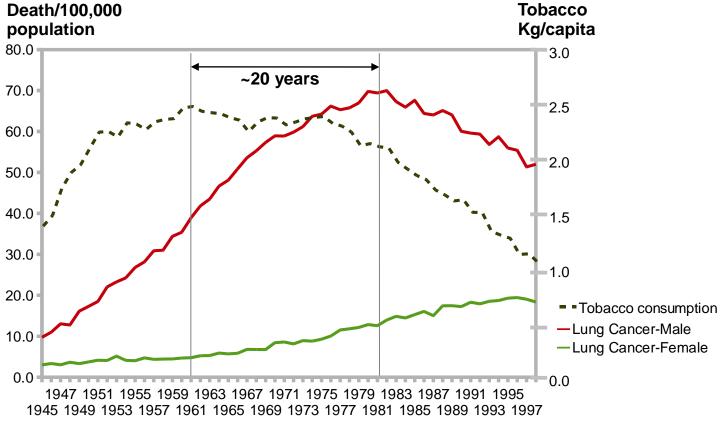



Time

### Age-Period-Cohort (APC)

- <u>Age</u> risk of disease depend on age such as
  - Low immunity in children
  - Exposure to chemical, hormone change
  - Age related disease, elderly less immunity etc
- <u>Period</u>: certain period living aspect change (60s, 80s, 90s, 2000s, 2010....)
- <u>Cohort</u>: Birth cohort experienced different era/period
- Interaction for risk factors

### Female breast cancer in Thailand






### Male colo-rectal cancer in Thailand

ASR /100,000 population 25 20 15 -Chiang Mai Lampang 10 Khon Kaen Songkhla 5 0 89 90 91 92 93 94 95 96 97 98 99 00 Year

#### Tobacco consumption and lung cancer in Australia



#### Year

AIHW: deloop M & Bhatia K 2001: Australian Health Trends 2001. AIHW Cat. No. PHE 24. Canberra: AIHW; the National Mortality Database ha Sriplung Thai Network of Cancer Registries

### The End – Thank you