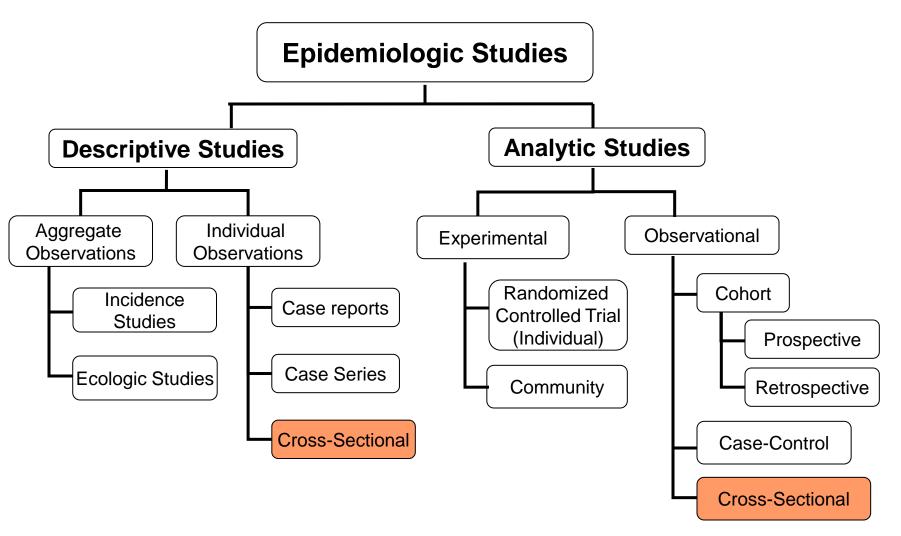
Epidemiologic Study Design: Cross-Sectional Studies

Dr Ko Ko Zaw

MBBS, MPH, PhD

Professor/Head, Epidemiology Department
University of Public Health

Objectives

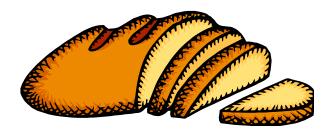

- Describe the features of a cross-sectional study
- Develop exposure and outcome definitions
- Describe uses and limitations of cross-sectional studies

Epidemiologic Investigative Process

- Generate specific hypotheses
- 2. Design analytic study
- Collect data
- Conduct descriptive analyses
- Calculate measures of association and test hypotheses
- Make conclusions and report results

Analytic Cross-Sectional Studies

Taxonomy of Epidemiologic Studies: Descriptive vs. Analytic Studies



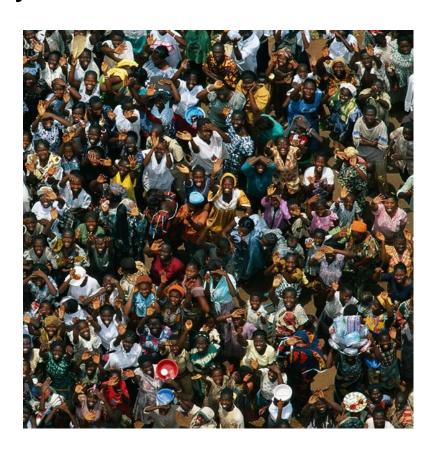
Review: Descriptive and Analytic Cross-Sectional Studies

- Descriptive cross-sectional studies: Examine the prevalence of disease (or exposure) in a defined population at one point in time
- Analytic cross-sectional studies: Examine the relationship between exposure and disease in a defined population at one point in time

Cross-Sectional Study Design

- A "slice" in time (snapshot), e.g. no follow-up period
- Investigator selects sample from population
- Study population selected based on a characteristic (such as age, location) that is NOT an exposure or an outcome!
- Exposures and outcomes measured at one time

Elements of Study Design


Important Elements of Study Design

- Defining the study population
- Defining outcomes
- Defining exposures

Defining the Study Population

Who do you want to apply your results to?

- General population
- Sex
- Age
- Race
- Geographic location
- Occupation,

http://www.mymodernmet.com/profiles/blogs/hidef-photos-earth-from-above?context=tag-earth

Exposures and Outcomes

- Exposure: What you do
- Outcome: What happens to you
- Almost anything can be an exposure, and almost anything can be an outcome!
 - Secondhand smoke
 - Drought
 - Malnutrition
 - Drunk driving
 - Road traffic accidents

- → Lung disease
- → Malnutrition
- → Cognitive delays
- → Road traffic accidents
- → Premature deaths

Defining Exposures

Factors to consider when defining exposures:

- Frequency, e.g. alcohol consumption per week
- Duration, e.g. annual exposure to pesticides
- Dose, e.g. mild, moderate, or severe violence
- Exposures that change over time, e.g. exercise, pregnancy, depression

Defining Outcomes

Components of a case definition:

- Person (who has the outcome?)
- Place (where is the study being conducted?)
- Time (what is the study time frame?)
- Clinical criteria
 - Symptoms
 - Laboratory tests
 - Diagnosis codes

Sources of Data for Cross-Sectional Studies

Data sources	Examples
Medical records	Care and treatment form ("CTC 2") for HIV-positive patients
Surveys/questionnaires	National Demographic and Health Survey
Physical measurements	Child nutrition study – height and weight
Laboratory tests	Cholesterol, pregnancy, HIV viral load ('bio-behavioral surveys')

Sources of Information

Can you think of some possible sources of information on exposure or disease?

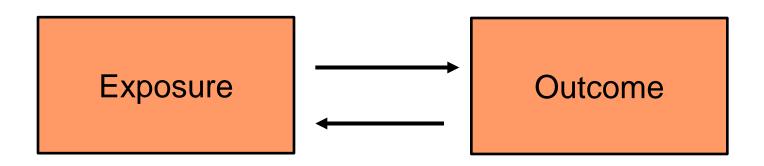
- Questionnaires
- Medical records
- Laboratory reports
- Prescription records

- Birth certificates
- Death certificates
- Disease registries
- Employee records

Analyzing Cross-Sectional Studies

- Measures of <u>exposure</u> (or <u>outcome</u>) <u>frequency</u>:
 - e.g. Prevalence of drinking alcohol in youth ages 13-15 in Dar es Salaam is 5.1% (exposure)
 - e.g. Prevalence of unprotected sex in youth ages 13-15 in Dar es Salaam is 4.5% (outcome)
- Measures of <u>association</u>:
 - e.g. Relationship between youth drinking and unprotected sex
 - Prevalence ratio
 - Prevalence odds ratio

Advantages of Cross-Sectional Studies


- Inexpensive One-time household survey
- Simple Data collection and analysis
- Generalizable results (if sampled correctly)
- Can examine multiple exposures and outcomes without restrictions on either

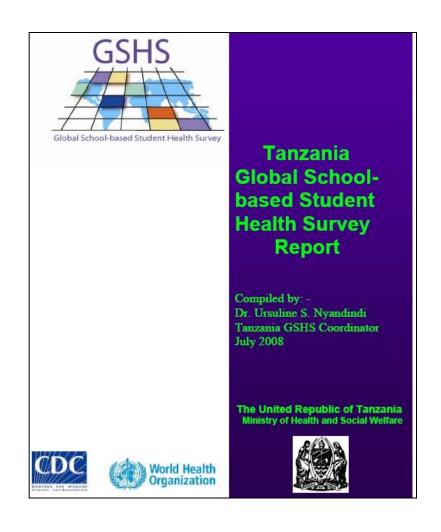
Cross-Sectional Studies: Disadvantages (1 of 3)

- Cannot establish causality (don't know if 'exposure' preceded 'outcome' or vice versa)
 - In above example, we do not know if alcohol use lead to more unprotected sex, or if unprotected sex encourages alcohol use
- Difficult to detect acute outcomes
 - Not ideal if we want to know about heavy alcohol use and likelihood of RTA

Cross-Sectional Studies: Disadvantages (2 of 3)

- Reverse causality must be considered
 - Exposures and outcomes <u>that change over</u> <u>time</u> may have complex relationships
 - Childhood physical activity and overweight
 - Alcohol use and job stability
 - Other examples?

Cross-Sectional Studies: Disadvantages (3 of 3)


- Bias introduced when exposure affects duration of illness
 - i.e.: liver inflammation can have many causes
 - Chronic alcohol use (exposure) results in longer-term liver inflammation (outcome), compared with other exposures
 - this increases its apparent association with liver inflammation a cross-sectional study
- Cannot calculate incidence
 - Slice in time means no follow-up measures

Uses of Cross-sectional Studies

- Study exposures associated with chronic illnesses (or at least not short-lived illnesses)
- Evaluate effects of long-lasting exposures
- Evaluate exposures that are not affected by outcomes (i.e., not subject to reverse causation)
- May serve as baseline for a cohort study
 - Baseline and 12-month survey in a population
- Can conduct repeated cross-sectional studies to measure change in a population
 - Time trends in TB prevalence

School Health Survey, Tanzania

- In 2008, 2,176
 questionnaires given in 25
 randomly selected schools
 in Dar es Salaam
- Participants were students ages 13-15 years
- Questions on diet, smoking, alcohol use, sexual behavior, exercise, violence

Tanzania GSHS 2008

Example: Cross-Sectional Study

Research question: What factors are associated with occupational injuries among children working in the streets in major African cities?

- Study population: 584 children aged 5-17 working on the streets of Lagos, Nigeria; Dar es Salaam, Tanzania; Johannesburg, South Africa, April-June 2014
- Data source: Questionnaire (interview)
- Outcomes: Specific types of injuries sustained while working on the streets
- Exposures: Sociodemographic characteristics, occupational characteristics

Example: Cross-Sectional Study

What are the **characteristics** of this study that make it a cross-sectional study?

- Study population selected independently of exposures or outcomes
- Exposures and outcomes evaluated at a single point in time (i.e., no follow-up of subjects)
- Multiple exposures and outcomes examined

Example: Cross-Sectional Study

Study results:

- 40% of the children reported an injury sustained while working in the streets
- Children working the highest number of hours and children who performed on the streets had the highest risk of injury
- Boys (vs girls), children>10 years (vs those ≤10), and children in Lagos (vs other cities) were more likely to experience moderate-to-severe injuries

Quiz: Cross-Sectional Studies

- 1. How is the study population defined in a crosssectional study?
- 2. True or False: You cannot calculate incidence from a cross-sectional study.
- 3. What measures of association are used to analyze cross-sectional studies?
- 4. True or False: You can study one exposure and multiple outcomes in a cross-sectional study.

Summary

- Cross-sectional studies are simple and inexpensive
 - Can examine multiple exposures and outcomes in the same population
- Cross-sectional studies <u>cannot</u> be used to infer temporal relationships between exposures and outcomes
- Choosing an appropriate study design takes careful consideration of the strengths and limitations of each type of design
- Proper selection of study population and careful definition of exposures and outcomes is essential

References

- Schoenbach V. Study designs: Cross-sectional studies, ecologic studies (and confidence intervals). EPID 600.
 Dept of Epidemiology. UNC-Chapel Hill. 2009.
- Rothman KJ, Greenland S. Modern Epidemiology, Second edition, Philadelphia, PA, 1998.
- Descriptive and Analytic Epidemiology. E is for Epi. North Carolina Center for Public Health Preparedness.
- WHO/CDC 2008. Global school-based health survey, Tanzania