Perioperative Management of Sepsis: A Paradigm Shift

Nay Myo Htun M.B.,B.S, M.Med.Sc, D.A Anaesthesiologist 1000-Bedded General Hospital Naypyidaw

29th March 2017

Outline of Presentation

- Definition of Sepsis
- **Overview of Pathophysiology**
- Initial resuscitation of patients with sepsis
 - undergoing surgical intervention
- **Surviving Sepsis Campaing Guideline**
- **Perioperative Issues**

Conclusion

The Impact of Sepsis

Sepsis and septic shock are *major healthcare problem*

□ Accounts for as much as 2 5% of intensive care unit (ICU) bed utilization

Common in elderly, immunocompromised and critically ill patients

□ Mortality from septic shock remain high (30-50%)

The Impact on Our OR/ICU?

Generalized Peritonitis

Bowel perforation

Bowel obstruction

Wound Infections

ICU – CAP, HAP, VAP

Definitions

The Third International Consensus Definitions (Sepsis-3)

Sepsis

Organ Dysfunction

Increase in the Sequential (Sepsis-related) Organ Failure Assessment (SOFA) score of 2 points or more

Life-threatening *organ dysfunction* caused by

a dysregulated host response to infection

In ED and general ward settings, at least 2 *quickSOFA (qSOFA)*:

RR of 22/min or greater, altered mentation (GCS< 13/15) or SBP of 100 mmHg or less.

Vasopressor requirement to maintain a MAP of \geq 65 mmHg and serum lactate >2 mmol/L (18mg/dL) in the absence of hypovolemia

Mervyn et al, SEPSIS-3 : *JAMA. 2016;315(8):801-810*

Sequential [Sepsis-Related] Organ Failure Assessment Score

	Score					
System	0	1	2	3	4	
Respiration	No					
Pao ₂ /Fio ₂ , mm Hg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support	
Coagulation				Subread at the		
Platelets, ×10 ³ /µL	≥150	<150	<100	<50	<20	
Liver						
Bilirubin, mg/dL (µmol/L)	<1.2 (20)	1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)	
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1 or norepinephrine ≤0.1 ^b	Dopamine >15 or epinephrine >0.1 or norepinephrine >0.1 ^b	
Central nervous system						
Glasgo <mark>w</mark> Coma Scale score ^c	15	13-14	10-12	6-9	<6	
Renal						
Creatinine, mg/dL (µmol/L)	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440)	>5.0 (440)	
Urine output, mL/d				<500	<200	

Vincent JL, Moreno R, Takala J, et The SOFA score to describe organ dysfunction/failure *Intensive Care Med. 1996;22(7):707-710.*

The Process of Sepsis Definitions by Task Force

1992

Systemic Inflammatory Response Syndrome (SIRS): Two or more of the following:

Temperature > 38°C or < 36°C

2001

- Heart rate > 90 beats per minute
- Tachypnoea (respiratory rate > 20 breaths.min⁻¹) or hyperventilation (PaCO₂ < 4.25kPa)
- White blood count > 12 x 10⁹.L⁻¹, or < 4 x 10⁹.L⁻¹

Sepsis: Two or more SIRS criteria in response to infection.

Severe sepsis: Sepsis associated with hypotension or organ dysfunction or organ hypoperfusion (e.g. oliguria, altered mental status, lactic acidosis).

Septic shock: Sepsis-induced hypotension (systolic blood pressure < 90mmHg or a reduction \geq 40mmHg from baseline) despite adequate fluid resuscitation along with signs of hypoperfusion.

International Sepsis Definitions Conference

 General signs and symptoms 	i	- Hemodynamic alterations		
Rigor - Fever (sometimes hypothe	ermia)	Arterial hypotension		
Tachypnea / Respiratory alkale	osis	Tachycardia		
Positive fluid balance - edema		Increased cardiac output / w	ide PP / Iow SVR / high SvO	2
- General hematologic/inflamm	atory reaction	Altered skin perfusion		
Increased (sometimes decreased)	WBC	Decreased urine output		
Increased CRP, IL-6 & procalc	itonin concentration	Hyperlactatemia - Increased	base deficit	
- Signs of organ dysfunction	Hyperglycemia		N	
Hypoxemia (ALI)	Thrombocytoper	nia, DIC		6
Altered mental status	Alteration in live	r tests (hyperbilirubinemia)		
Alteration in renal function	Intolerance to fe	eding (altered GI motility)	SEPSI	5-3

Mitchell et al(2003) International Sepsis Definitions Conference: Intensive Care Med 29:530–538.

Why SOFA score ???

SOFA score of 2 or greater identified a 2- to 25-fold increased risk of dying compared with patients with a SOFA score less than 2

SOFA score is not intended to be used as a tool for patient management but as a means to clinically characterize a septic patient

SIRS Criteria

The task force wishes to stress that SIRS criteria may still remain useful for the **identification of infection**.

Perioperative Management of Sepsis

- **Early recognition** and treatment of sepsis is important.
- **Not all septic patients have self-evident septic focus**
- □ Initial assessment followed by secondary assessment
- a. State of IV Volume status
- b. The need and Adequacy of resuscitation
- c. Severity of Organs dysfuctions
- d. Presence of *Comorbid conditions*

Early haemodynamic optimization can reduce mortality

Martijn P et al (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality: *Critical Care 2005*, 9:R771-R779

fppt.com

Kate Stephens (2012) Management of sepsis with limited resources: Update in Anaesthesia; Volume 28: 145-155

Surviving Sepsis Campaing Guidelines Early Goal Directed Therapy (EGDT)

Fluid Resuscitation

Fluid of Choices ????

Crystalloids Vs Colloids

Crystalloids as the fluid of choice for initial resuscitation and subsequent intravascular volume replacement

Balanced Salt Solution Vs 0.9% Normal Saline

Either is acceptable Close monitoring of serum Cl⁻ to avoid hyperchloraemic metabolic acidosis

Suggest using Albumin in addition to crystalloids for initial resuscitation and subsequent intravascular volume replacement

Xu et al. Critical Care 2014, 18:702 http://ccforum.com/content/18/6/702

RESEARCH

Open Access

Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials

Jing-Yuan Xu, Qi-Hong Chen, Jian-Feng Xie, Chun Pan, Song-Qiao Liu, Li-Wei Huang, Cong-Shan Yang, Ling Liu, Ying-Zi Huang, Feng-Mei Guo, Yi Yang and Hai-Bo Qiu^{*}

A trend toward reduced 90-day mortality was observed in severe sepsis patients resuscitated with albumin compared with crystalloid and saline

Role of Synthetic Colloids

Recommend Against using Hydroxyethyl Starches (HES) for intravascular volume replacement

BMJ 2013;346:f839 doi: 10.1136/bmj.f839 (Published 15 February 2013)

Page 1 of 12

Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis

OPEN ACCESS

Nicolai Haase *physician*¹, Anders Perner *professor*¹, Louise Inkeri Hennings *physician*¹, Martin Siegemund *professor*², Bo Lauridsen *physician*¹, Mik Wetterslev *medical student*¹, Jørn Wetterslev *chief physician*³

HES 130/0.38-0.45 increased the use of RRT, RBC transfusion and resulted in more serious adverse events

Role of Synthetic Colloids (Gelatins)

Gelatin use in critically ill adult patients did not increase mortality or acute kidney injury compared to albumin or crystalloid

Journal of Critical Care

SSC suggest using Crystalloids over Gelatins when resuscitating patients with sepsis or septic shock

albumin * ** *

Claudia Moeller^{a, 1}, Carolin Fleischmann^{a, b, 1}, Daniel Thomas-Rueddel^{a, b}, Vlasislav Vlasakov^a, Bram Rochwerg^c, Philip Theurer^a, Luciano Gattinoni^d, Konrad Reinhart^{a, b,} ^A, ^M, Christiane S. Hartog^{a, b}

What are GOALS for EGDT???

2012 MAP > 65 mmHg

Urine Output >0.5 ml/kg/hr Capillary Refill < 2 sec

CVP 8-12 mmHg

ScvO₂ > 70%

Serum Lactate < 4 mmol/L Dynamic over static variables

CVP and ScvO₂ : Not reliable and fail to show improve outcome

MAP 65 Vs 85 mmHg : No difference outcome

Serum lactate guided resuscitation : Significant reductin in Mortality

VASOACTIVE MEDICATIONS

□Norepinephrine as the first-choice vasopressor

□Adding Epinephrine (20-50 mcg/min)/Vasopressin (upto 0.03 U/min)

Dopamine only in selected cases (risk of arrythmia)

Dobutamine for hypoperfusion with fluid & vasopressor agents

Phenylepherine : Still controversial !!!

Dose of Norepinephrine

The mean dose of norepinephrine ranges from 0.2 to 1.3 mcg/kg/min with a maximum dosage of 3.3 mcg/kg/min

When to consider adding another vasopressor ????

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 28, 2008

VOL. 358 NO. 9

Potential benefit in the population requiring $\geq 15 \ \mu g/min$ of norepinephrine

and Dieter Ayers, M.Sc., for the VASST Investigators*

Corticosteroids

Against using IV hydrocortisone to treat septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability

When to Start and How much ??

Only if Adequate fluid therapy and vasopressor fail to achieve target MAP
 IV hydrocortisone at a dose of 200 mg per day
 Use continuous flow

Blood Products

RBC transfusion only when hemoglobin concentration decreases to < 7.0 g/dL in adults in the absence of extenuating circumstances, such as myocardial ischemia, severe hypoxemia, or acute hemorrhage

Against the use of erythropoietin for treatment of anaemia associated with sepsis

A Randomized Trial of Protocol-Based Care for Early Septic Shock

The ProCESS Investigators*

Blood Products cont:

Against the use of fresh frozen plasma to correct clotting abnormalities in the absence of bleeding or planned invasive procedures

Prophylactic platelet transfusion when counts are < 10,000 /mm3 ($10 \times 109/L$) in the absence of apparent bleeding and when counts are < 20,000/mm3 ($20 \times 109/L$) if the patient has a significant risk of bleeding

Higher platelet counts (\geq 50,000/mm3 [50 × 109/L]) are advised for active bleeding, surgery, or invasive procedures

Giancarlo et al (2009) Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) Working Party: *Blood Transfus 2009; 7: 132-150*

SSC Guidelines Against

Use of IV immunoglobulins

Use of blood purification techniques (CPFA, Hemoadsorption etc)

Use of Antithrombin

No recommendation regarding the use of thrombomodulin or heparin

Blood Culture

Appropriate routine microbiologic cultures (including blood) be obtained before starting antimicrobial therapy

Appropriate routine microbiologic cultures always include at least two sets of blood cultures (aerobic and anaerobic)

Antibiotic Therapy

Administration of IV antimicrobials should be initiated as soon as possible after recognition and within one hour

Empiric br antimicrob septic shoc Daily Assessment bring with one or more nting with sepsis or thogens

Antibiotic de-escalation should be done within first few days depending on clinical improvements and/or evidence of infection resolution

Antibiotic Therapy

Antimicrobial treatment duration of 7 to 10 days is adequate for most serious infections

Longer Duration : Only for poor clinical resolution

Recommend against sustained systemic antimicrobial prophylaxis in patients with severe inflammatory states of noninfectious origin (e.g., severe pancreatitis, burn injury)

BICARBONATE THERAPY

Against the use of sodium bicarbonate therapy to improve hemodynamics or to reduce vasopressor requirements in patients with hypoperfusion-induced lactic acidemia with $pH \ge 7.15$

Sepsis Bundles

WITHIN 3 HOURS

- 1. Measure *lactate* level
- 2. Obtain *blood cultures*
- 3. I.V broad spectrum *antibiotics*
- 4. I.V 30ml/kg crystalloid
 for hypotension or
 lactate ≥4mmol/L

WITHIN 6 HOURS

1. Apply *vasopressors* (MAP≥65mmHg)

- 2. *Re-assess* volume status and tissue perfusion
- 3. Re-measure lactate

Initial Assessment and Resuscitation should be followed Secondary Assessment

Preoperative Assessment

Detailed History & Examination + Airway Assessment

Investigations

- Full blood count /BUN/ Creatinine/Electrolyte/Coagulation profile/Blood Glucose
- CXR /EKG
- Imaging studies May be helpful for decision of *source control* procedure

Diagnosis and the clinical course

Timing and Degree of Surgery

!!! Immediate goal !!!

Aequate source control with the least physiological embarrassment Communication with Surgical Team is crtitically important

Preoperative Preparation

- Optimize patient using SSC guidelines (Bundles)
 - **Heamodynamic stability**
 - **Correction of coagulopathy**
 - □ Aspiration prophylaxis
 - □ Blood glucose control (≤ 180 mg%)
- **Prepare for Post-operative plan (ICU or HDU)**

Explain the possible risks and outcome after anesthesia and surgery with patients and family

Choice of Anesthetic Technique

Severity of Sepsis (esp CVS stability)	Nature and extent of surgical procedure	
<u>Neuraxial Anesthesia</u>	<u>General Anesthesia</u>	
•Relative	• CVS instability	
contraindication	• Need for RSI	
•Exaggerated	• Easily desaturate	

- physiological response
- Coagulopathy
- •Epidural abscess, epidural haematoma

nesthesia

- ability
- RSI
- saturate
- Can provide high FiO2
- Lungs protective ventilation

Pheripheral nerve *block*

Expertise of

anesthesiologist on

sepcific technique

- Can avoid systemic
- effects of IV or

inhalational agents

- CVS stability
- Pharmacokinetic of LA

acidic envinron

onment

Intraoperative Management		
Before Induction	 Emergency medications/ anesthetic machine/ airway and resuscitation equipment Prepare for i.v lines (16 – 14 G) 	
Monitoring	 EKG, SpO2, NIBP, EtCO2, Temperature, Urine Output Other monitoring (IBP, CVP, ScVO2, lactate, CO monitoring, TEE only if available) 	
Induction	 RSI is the usual technique of choice Preoxygenation with 100% O₂ Step-wise process, Small doses of i.v agents, Titrated to clinical response The CARE how anesthetic agents are 	
	administered	

Choosing an Induction Agent

- *Etomidate* (0.2 to 0.3 mg/kg)
- Rapid onset and short DOA
- CVS stability
- Issue of Adrenal insufficiency
- Current literature doesn't support absolute mortality effect

<u>Midazolam</u> (0.1-0.3 mg/kg)

- Rapid onset, short DOA
- Directly relax laryngeal muscle
- Decrease in BP (approx 10%)
- Reflex increase in HR
- Cardiac index is well maintained

<u>Ketamine</u>

- •I.V 1-2 mg/kg
- Rapid onset and short DOA
- Increase in HR, BP,SVR

- Increase in myocardial O2 demand
- Maintain airway reflexes and increase
- secretion
- •Useful for septic shock

Choosing an Induction Agent

<u>Propofol</u> (1.5 – 2 mg/kg)	Thiopentone (3-5mg/kg)	
Rapid onset, short DOA	Rapid onset	
Inhibit airway reflexes	Short DOA	
Reduce BP, SVR (30% from	Decrease SVR, Increase HR	
base line)	 Direct Myocardial depression 	
Impaired baroreceptor reflex	 Immunosuppressive action 	
Inhibitory effect on Neutrophil	 Inhibition of granulocyte 	
Do not affect by renal	recruitment and phagocytosis	
dysfunction		

Marie Mullen(2012) Induction Agents for Endotracheal Intubation in Severe Sepsis and Septic Shock: Sepsis - An Ongoing and Significant Challenge : InTech Publish ;P 391-410

Role of Opioids

- •Can enable to reduce dose of I.V agents.
- Can avoid decrease in SVR
- DOA may be increased by impaired *hepatic and renal function*
- Fentany/Alfentanil/Remifentanil : NO MORPHINE
- *Bradycardia* (Most are already tachycardiac)

Muscle Relaxants

- DNMBA can be used for RSI (*hyperkalaemia*)
- For maintenance, cis-atracurium or atracurium has organ independent metabolism.
- Vecuronium is devoid of CVS insults (biliary and renal metabolism)

Perioperative Issues

- Continue EGDT
- Accessed by by CVP, Capillary refill, *Urine Output* etc.
- Global O2 Delivery : Serum lactate -2 mmol/L and ScvO2 >70%

Blood Components

Fluid

- Keep Hb% 7-9 g/dl
- FFP and Platelet concentrate depending on amount of blood loss and presence of coagulopathy

Others

- Keep Normothermia
- Blood glucose level < 180 mg/dL
- Proper Timing of I.V Antibiotic

Mechanical Ventilation

Target	• SpO2 >90% with pH >7.2 (permissive hypercapnia: PaCO2 < 10 kPa)	
FiO2	• Adjusted with target SpO2 (usually within 0.5-0.6)	
Tidal Volume	• 6-8 ml/kg	
Plateau pressures	• 30cmH ₂ 0	
Other	Recruitment manoeuvres	
PC-IRV	• Failed oxygenation with lungs protective ventilation strategy	

Postoperative Management

- The *Rate of blood loss* should be minimal
- Decision to extubate depend on
 - Severity of Sepsis (Hemodynamic Instability)
 - Presence of comorbid diseases
 - Extensiveness of surgical procedures
- Monitoring should be continued at PACU / Pain Control
- Safe transfer of the patient to the ICU/HDU is essential
- A focused hand-over report is helpful for the ICU colleagues
- Pre-resuscitation measurements should be used to calculate the ICU APACHE score

A major healthcare issue with a high mortality

Definitions has been changed recently

Fluid resuscitation with vasopressors to optimize CVS parameter is critically important

Timely intervention to complete sepsis bundles can improve outcome

Conclusion

I.V Antibiotic should be started ASAP & Continued intraoperatively if required

Decision for source control with appropriate surgical intervention always depend on sincere communication between surgical and anaesthesia teams

If intubation is decided in ER, always consider appropriate anaesthetic agents depending on pharmacodynamic/kinetics in relation to sepsis

