

Investigating an Outbreak

Facilitator Name Date

Objectives

When you have completed this session, you will be able to:

- Determine when to investigate an outbreak
- Verify and report an outbreak or public health event
- Develop clear investigation objectives
- Summarize cases by time, place and person
- Draw and interpret an epidemic curve
- Develop an explanation for the possible cause of an outbreak

Session Overview

- Overview of outbreak investigations
- Steps of an outbreak investigation
- Basic data analysis

Overview of Outbreak Investigations

Outbreaks in the News

- Ebola: World Goes on Red Alert
- Nicaraguans Affected by Diarrhea Outbreak
- Dover in Grip of Sweeping Epidemic of Influenza
- Meningitis Outbreak Ruled Out in an Alajuela Jail
- Mideast virus MERS merits caution, not alarm, WHO says
- Anthrax Outbreak Alert in Ganado

The occurrence of more cases of a disease than expected for a particular place and time

Do Outbreaks Connect to Surveillance?

Identifying a Potential Outbreak

- Review of surveillance data
- Clinician or laboratory reports of unusual diagnoses
- Reports from the public
- Media

- To prevent and control the disease
- To characterize a public health problem
- To conduct research and answer scientific questions
- For political/legal reasons
- To train health department staff in methods

Should you investigate?

Yes or No?

Depends on:

- Severity of illness
- Potential for spread
- Availability of prevention and control measures

- Political considerations
- Public relations
- Resource availability

Exceptions to the Rule

Exercise 1: Would you investigate?

On your own:

- 1. Review the scenarios in your workbook.
- 2. For each scenario determine if you would probably investigate.
- 3. After 10 minutes, we will discuss as a group.

- 1. ___If the illness is life-threatening such as rabies
- 2. __If signs/symptoms or confirmed diagnoses suggest patients might not have the same illness
- 3. __If cases all report that they ate food from a specific food establishment

- 4. __If there is outside pressure from politicians or the media
- 5. __If there are confirmed clusters/large numbers of a similar illness
- 6. __If ill persons are not able to provide adequate information for investigation

Would you investigate?

Probably Not

- 7. __If the illness seems to be associated with a commercially distributed product
- 8. __If a complainant refuses to provide his/her name but otherwise provides detailed information
- 9. __If there are repeated complaints made by the same individual(s) for which prior investigations revealed no significant findings

What are the objectives of your investigation?

- Identify the
 - agent
 - source, and/or
 - mode of transmission
- Characterize the extent of the outbreak, e.g., who has been affected, who is at risk
- Identify exposures or risk factors that increase risk of disease
- Develop and implement control and prevention measures

Steps of an Outbreak Investigation

General Phases of an Outbreak Investigation

Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Explanatory

Explanatory Phase

- 7. Develop hypotheses
- 8. Evaluate hypotheses epidemiologically
- 9. Reconcile epidemiology with laboratory and environmental findings
- 10. Conduct additional studies as necessary

- 11. Implement and evaluate prevention and control measures
- 12. Initiate or maintain surveillance
- 13. Communicate findings

Descriptive Phase

1. Prepare for fieldwork

- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Tasks to Prepare For Fieldwork

- Form a team
- Learn about the disease
- Make necessary administrative, personnel, and logistical arrangements
- Coordinate with partner agencies and local contacts

Form a Team

Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

The occurrence of more cases of a disease than expected for a particular place and time

Case Reports Will Help Establish the Existence of an Outbreak

- Review the reports or data
- Confirm that cases are the same disease
- Confirm that the number of cases exceeds the normal
- Apparent increases in cases may not be real

Confirmed Cyclosporiasis Cases by Week of Illness Onset

Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Evaluate the Clues to Verify the Diagnosis

- Signs and symptoms
- Laboratory findings
- Disease onset
- Duration of symptoms
- Suspected exposure
- Suspected virus, bacteria, or toxin

Laboratory Confirmation

- Most definitive method for verifying diagnosis
- Pathogen identification helps identify the incubation period
- Don't wait for laboratory diagnosis to proceed

Descriptive

Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Example: Outbreak Case Definition for Cholera

Suspected case:

Descriptive

- Any person residing in Ajegunle with at least one episode of severe diarrhea between January 1 and April 30, 2011
- Confirmed case:
 - Suspect case with rectal swab positive for Vibrio cholerae O1

	1	•	•
Outbreak	Invest	igai	rion
Cachican		.0~	

Components of Outbreak Case Definition

Clinical criteria

Descriptive

- Characteristic symptoms and clinical signs
- Laboratory data
- Epidemiologic criteria (especially for outbreaks)
 - Time
 - Place
 - Person (epidemiologic link, otherwise uncommon)
- Should *not* include the hypothesis (suspected exposure) being tested

Example: Outbreak Case Definition for Cholera

Outbreak Investigation

Ref: Aman-Oloniyo et al. 61st Annual EIS Conference, Atlanta, GA, April 2012

Case Classification Levels

Confirmed laboratory confirmed, compatible symptoms

Probable

compatible symptoms, epidemiologically linked

Possible or Suspect compatible symptoms
Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Find Cases Systematically, Develop Line List

		Signs/Symptoms			Labs	Demographics	
Case #	Date of Symptom Onset	Diarrhea	Vomiting	Fever >37ºC	Positive stool culture	Age	Gender
1	22/10/14	Y	Y	Not done	Y	19	М
2	25/10/14	N	Y	Ν	Ν	17	М
3	22/10/14	Ν	Y	N	Y	23	F
4	27/10/14	Y	?	?	Pending	18	?
5	23/10/14	Ν	Y	N	Y	21	М
6	21/10/14	Y	Y	Y	Not submitted	18	F

You have been tasked with finding cases of malaria in a small rural community.

- How would you find cases?
- What information would you collect?

In your group:

- 1. Read the scenario in your workbook.
- 2. What are the first steps you would take?
- 3. Review surveillance data
- 4. Create working case definitions for suspect, probable and confirmed cases.

Descriptive Phase

- 1. Prepare for fieldwork
- 2. Establish the existence of an outbreak
- 3. Verify the diagnosis
- 4. Construct a case definition
- 5. Identify cases and collect information
- 6. Perform descriptive epidemiology

Descriptive Epidemiology

Describe and orient data

- Person
- Place
- Time

- Time (epidemic curve)
 - Ideally: when were they infected?
 - More practically: when did they become ill?
- Place (spot map, shaded map)
 - Ideally: where were they infected?
 - More commonly: where do they live, work?
- Person (tables)
 - Who was infected?
 - Numerators and denominators
 - What do the cases have in common?

- Use "epidemic curve" in outbreak investigations
- Histogram (no space between adjacent columns)
- X-axis = date of onset of illness
 - Hour(s), day(s), week, month
- Y-axis = number of cases
- Can display columns or "stack of boxes" (personal preference)

Dates of Onset of Disease X, District Y, September 2014

						Sept.	No. Cases
Dates of Onset (n=57)							1
01/09	06/09	07/09	08/09	09/09	11/09	2	0
03/09	06/09	07/09	08/09	09/09	11/09	3	1
01/00	06/00	07/00	00/00	00/00	12/00	4	3
04/09	00/09	07/09	00/09	09/09	12/09	5	3
04/09	06/09	07/09	08/09	09/09	12/09	6	10
04/09	06/09	07/09	08/09	09/09	14/09	7	14
06/00	07/00	07/00	08/00	na/na	15/00	8	11
00/03	07/03	07/03	00/03	03/03	13/03	9	7
06/09	07/09	07/09	08/09	09/09	17/09	10	3
06/09	07/09	07/09	08/09	10/09		11	2
06/09	07/09	07/09	08/09	10/09		12	2
	07/00	01/00	00/00	10/00		13	0
06/09	07/09	08/09	08/09	10/09		14	1
What range for X-axis do you suggest?						15	1
						16	0
						17	1

Outbreak Investigation

With Data

Now add the axis labels

With title

Interpreting Epidemic Curves

- Show the magnitude of the outbreak
- Show the time course of the outbreak
- Can help determine the incubation period or exposure period
- Can show the pattern of spread
- Highlight outliers

Describe and Orient the Data by Place

Description

- Maps
 - Spot
 - Area

Descriptive Spot Map: MERS-CoV detections in KSA

57

Age and Sex Distribution, Ebola Cases, Zaire, 1976

	Age (yrs)	Male	Female	Total	
-	< 1	10	14	24	
	1 - 14	18	25	43	
	15 - 29	33	60	93	
	30 - 49	57	52	109	
	50+	23	26	49	
	Total	141	177	318	
tb	reak Investigation				

Perform Descriptive Epidemiology

Work in teams of two:

- 1. Create a line list of current cases
- 2. Analyze the data using various statistical methods
- 3. Create an epidemic curve
- 4. Interpret the epidemic curve

Exercise 3:

General Phases of an Outbreak Investigation

Explanatory

Explanatory Phase

7. Develop hypotheses

- 8. Evaluate hypotheses epidemiologically
- 9. Reconcile epidemiology with laboratory and environmental findings
- 10. Conduct additional studies as necessary

Explanatory

What is a hypothesis?

- Hypothesis (in context of outbreak) = educated guess about an association between an exposure and outcome, and/or about mode of spread
- How to develop a hypothesis
 - Subject matter knowledge known sources, vehicles, transmission modes
 - Review descriptive epidemiology what would account for most?
 - Outliers (unique exposure opportunities)
 - Talk to case-patients what do they think?
 - What do local health officials think?

Scenario: Several cases of meningitis (presumed meningococcal) among newborns in Hospital X

Subject matter knowledge [from WHO Fact Sheet]: Meningococcal meningitis is transmitted from person-toperson through droplets of respiratory or throat secretions from carriers. Close and prolonged contact (e.g., kissing, sneezing or coughing, or living in close quarters with an infected person) facilitates the spread of the disease

What is your hypothesis? (Specify outcome and possible exposure)

Explanatory

Develop a Hypothesis

- <u>Outcome</u> is meningitis
- In this hospital, newborns stayed with their mothers in the maternity ward
- <u>Exposure</u> is person (presumably carrier) in maternity ward
 - Physician, nurse, technician?
 - Mother?
 - Visitor?

Exercise 4: Hypothesis Generation

Work in teams of two.

- 1. Based on your information, select **one** hypothesis to test further.
- 2. Review the January 19 update. Does it support your hypothesis?
- 3. Review the January 20 update. Does it support your hypothesis?

Explanatory

Explanatory Phase

- 7. Develop hypotheses
- 8. Evaluate hypotheses epidemiologically
- 9. Reconcile epidemiology with laboratory and environmental findings
- 10. Conduct additional studies as necessary

- Comparing hypotheses with established facts
 - Laboratory evidence
 - Clinical evidence
 - Environmental evidence
 - Epidemiologic evidence
- Use analytic epidemiology

Explanatory

Explanatory Phase

- 7. Develop hypotheses
- 8. Evaluate hypotheses epidemiologically
- 9. Reconcile epidemiology with laboratory and environmental findings
- 10. Conduct additional studies as necessary

General Phases of an Outbreak Investigation

11. Implement and evaluate prevention and control measures

- 12. Initiate or maintain surveillance
- 13. Communicate findings

Implementing Control Measures

- Prevent further exposure and future outbreaks by eliminating or treating the source
- Initiate as soon as possible

Chain of Transmission

Prevention and Control Measures

Immediate control measures

Long-term control measures

Response

Short-term or Long-term Control Measures?

- 1. Recommending different food safety procedures in a restaurant
- 2. Sending ill children home from a school where there is an outbreak
- 3. Containing a chemical spill and evacuating the area
- 4. Establishing screening programs for local emergency departments
- 5. Making engineering modifications to existing water systems

11. Implement and evaluate prevention and control measures

12. Initiate or maintain surveillance

13. Communicate findings

Surveillance — Are the Control Measures Working?

Outbreak Investigation

Response

Who Needs to Know?

- 11. Implement and evaluate prevention and control measures
- 12. Initiate or maintain surveillance
- 13. Communicate findings

Communicate Findings

- During the investigation
 - Among team members
 - To the public

Response

To health professionals

- To public health officials/policy makers
- At the end of the investigation
 - Oral briefing
 - Written report

Response

Example: Hantavirus Outbreak in Panama

- Severe cardiopulmonary illness
- Rodent-borne
- 1999 2000
- Los Santos province
- 12 patients; 3 died

Response

Example: Hantavirus Outbreak in Panama

Report led to Prevention

- Local risk-reduction measures
- Nationwide public awareness and risk-reduction campaign
- Additional suspected cases evaluated in other provinces
- Treatment guidelines established
- Additional studies to identify the rodent reservoir

Written Report

- Recommends actions needed
- Shares new insights

Response

Serves as a record of performance

- Supports research and evaluation activities
- Serves as a document for potential legal issues

~ 2 - 3

pages

Response

- 1. Summary
- 2. Introduction and Background
- 3. Outbreak Description
- 4. Methods and Results
- 5. Discussion
- 6. Lessons Learned
- 7. Recommendations
- 8. Acknowledgements

+ Supporting Documentation

General Phases of an Outbreak Investigation

Outbreak Investigation

Points to Remember

- 1. Alert thresholds will help you know when to investigate an outbreak
- 2. Document all of the rumors, reports and verified information about an outbreak
- Assemble an outbreak investigation team and consider all of the logistics that will need to be taken care of so that they can do their jobs
- 4. Analyze the investigation results and decide if there is immediate action needed
- 5. Prepare an outbreak report to submit to the National Level

Outbreak investigations should result in actionable recommendations

-Immediate control measures

-Long-term prevention and control

- 1. What are your recommendations for prevention and control of this cholera outbreak?
- 2. Select one group member to present your group's responses to exercises 4 and 5.