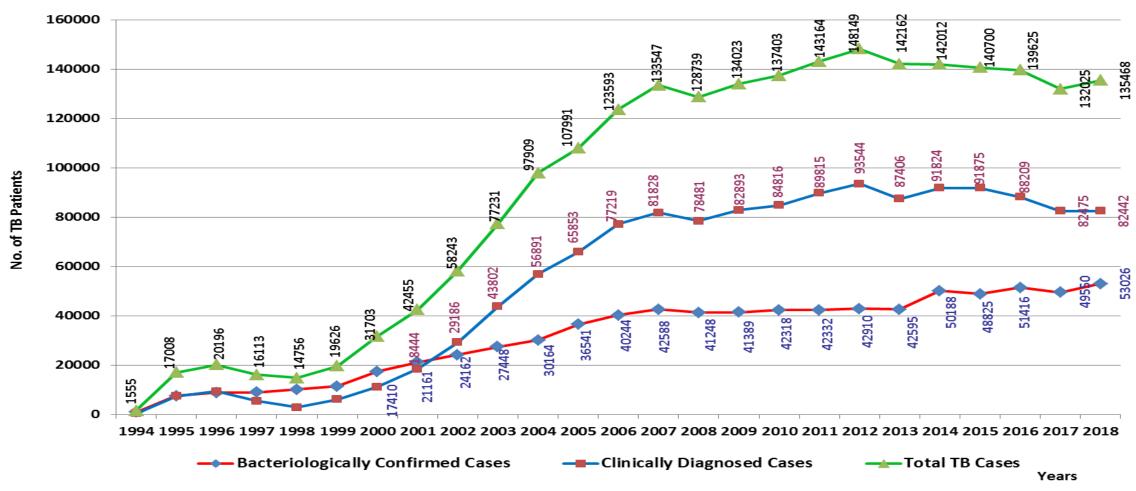


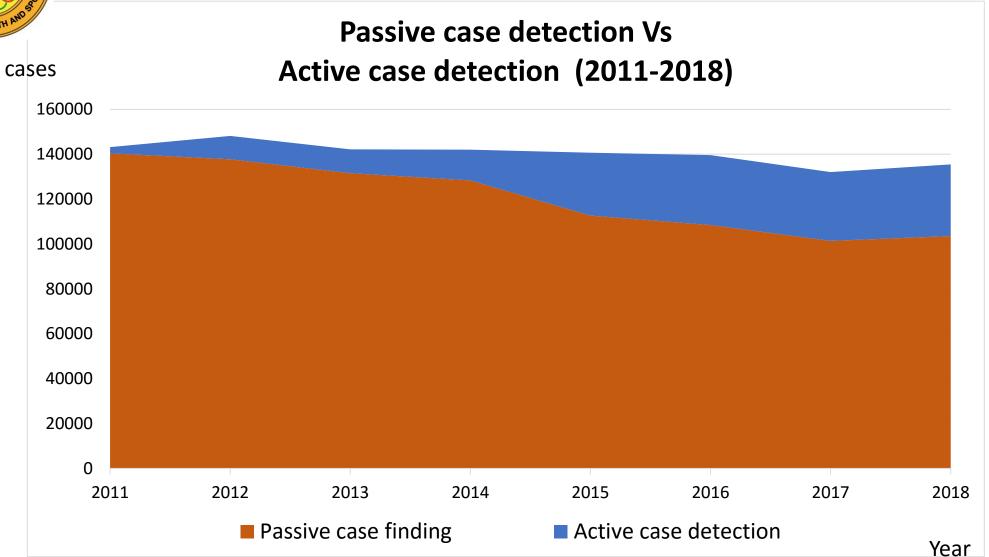
### Trend and Implications

Ikushi Onozaki MD, MPH, FFPH




#### Background (Survey Result 2009-2010)

#### Prevalence of TB among aged 15 or more


|                  | Smear Positive case |          | Bacteriologically confirmed case |     |          |                |
|------------------|---------------------|----------|----------------------------------|-----|----------|----------------|
|                  | n                   | /100,000 | 95% CI                           | n   | /100,000 | 95% CI         |
| All participants | 123                 | 242.3    | (186.1-315.3)                    | 311 | 612.8    | (502.2-747.6)  |
| Strata           |                     |          |                                  |     |          |                |
| Division         | 70                  | 191.6    | (137.4-267.3)                    | 192 | 522.8    | (420.9-649.1)  |
| State            | 53                  | 369.0    | (235.6-577.5)                    | 119 | 838.0    | (560.3-1251.5) |
| Urban/Rural      |                     |          |                                  |     |          |                |
| Urban            | 38                  | 330.7    | (216.2-505.7)                    | 103 | 903.2    | (661.8-1231.5) |
| Rural            | 85                  | 216.1    | (153.6-304.0)                    | 208 | 526.8    | (410.1-676.5)  |



#### Trend of TB Case Notification (1995-2018)









# Comparison of the prevalence survey methodology in 2009/2010 and 2017/2018

|                          | 2009/2010 survey                                              | 2017/2018 Survey                                                                        |  |  |
|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Data Collection          | June 2009- April 2010                                         | Oct 2017- Sep 2018                                                                      |  |  |
| Sample size              | 51,367                                                        | 66,479                                                                                  |  |  |
| Clusters                 | 70 clusters/Planed size: 710                                  | 138 clusters/Planed size: 500                                                           |  |  |
| Expected main result     | National prevalence estimate of bacteriologically positive TB | National and subnational prevalence estimates of bacteriologically positive TB          |  |  |
| Screening tool           | Symptom (cough≥3w)<br>Chest X-ray abnormality by film<br>CXR  | Symptom (cough≥2w) Chest X-ray abnormality by direct digital CXR                        |  |  |
| Sputum sample            | 2 samples:<br>Spot and overnight morning                      | 3 samples: Spot, overnight morning, and morning spot                                    |  |  |
| Primary diagnostic tests | 2 smear and 2 culture                                         | 2 Xpert Ultra<br>1 smear for Xpert Ultra positive<br>1 culture for Xpert Ultra positive |  |  |

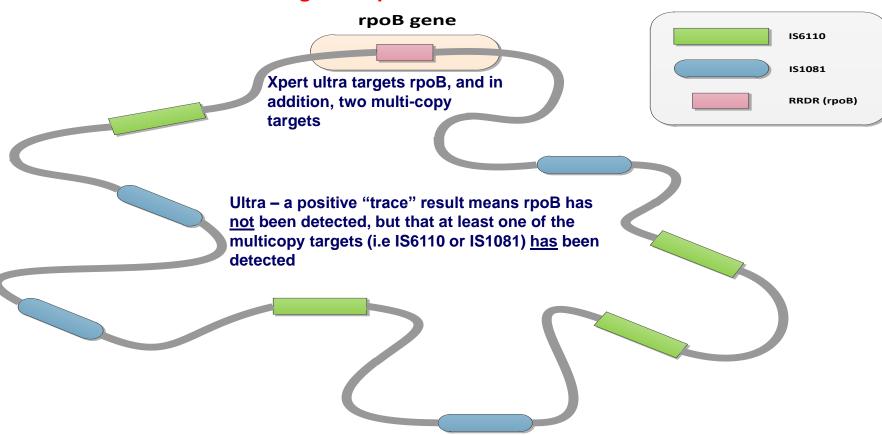


### Sensitivity of diagnostic tools

| cfu/ml  | 1:                                 |         |  |  |
|---------|------------------------------------|---------|--|--|
| 10, 000 | Light Microscope                   |         |  |  |
| 5000    | FM microscope<br>Line Probe        |         |  |  |
| 1, 000  |                                    |         |  |  |
|         |                                    |         |  |  |
|         | Soild Culture<br>GeneXpert MTB/Rif | LAMP-TB |  |  |
| 100     |                                    |         |  |  |
|         | Xpert Ultra                        |         |  |  |
|         | MGIT (Liquid Culture)              |         |  |  |
| 10      |                                    |         |  |  |



# What do Xpert (MTB/RIF and Ultra) tests detect?


**Xpert MTB/RIF and Ultra both detect MTB-specific DNA** 

They cannot differentiate between viable and non-viable organisms (live and dead bacilli)



### **Xpert MTB/RIF vs Ultra**

#### Sole target of Xpert MTB/RIF



RRDR is where 95% of mutations associated with RIF resistance occur

- Increased sensitivity: 16 CFU/ml for Ultra vs 114 CFU/ml for Xpert
- All Ultra trace results are rifampicin indeterminate



# Technical Expert Group on Xpert MTB/RIF Ultra Assay (2017)



- Ultra has higher sensitivity than Xpert MTB/RIF particularly in smear-negative culture-positive specimens and in specimens from HIV-infected patients, with at least as good accuracy for rifampicin resistance detection
- Much of the increase in sensitivity for MTB detection with the Ultra assay was attributed to "trace calls"
  - sensitivity increase among smear-negative culture-positive specimens using Ultra with the "trace call" was 17% compared with Xpert MTB/RIF, and this increase was reduced to around 8% when not using the "trace call".
- The group recognized that increased sensitivity resulted in decreased specificity for TB detection (95% overall for Ultra, 98% for Xpert MTB/RIF) and that there is a trade-off between increased diagnosis and overtreatment



# What does a positive Xpert (MTB/RIF and Ultra) result mean?

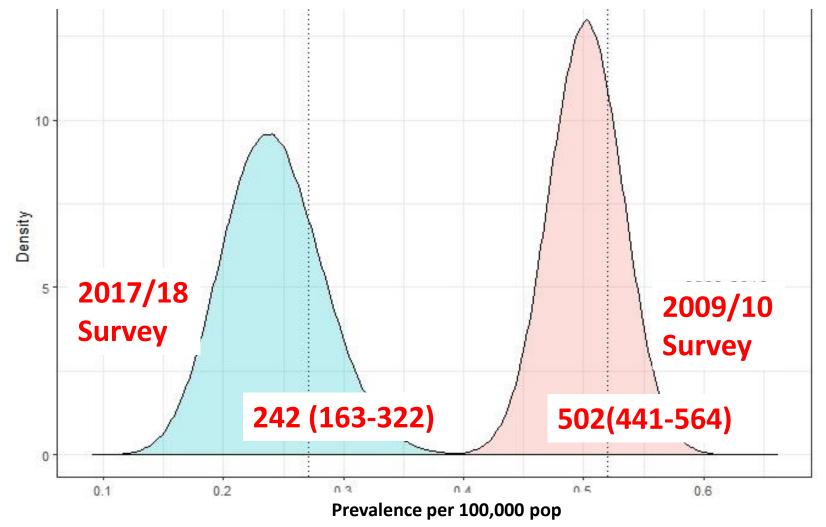
1. Someone has active TB disease (live bacilli)

or

2. Someone had TB in the past and received treatment but does not have it now

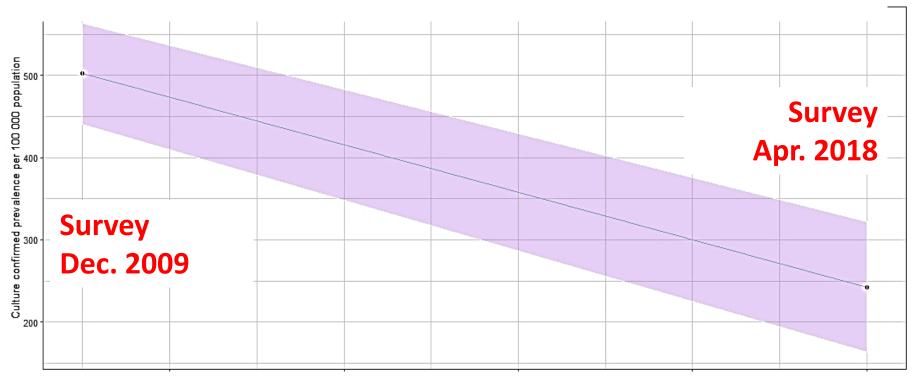
or

3. Someone had incipient TB that resolved (self-cured) without TB treatment, and does not have active TB disease now




## Comparison of the prevalence survey methodology in 2009/2010 and 2017/2018

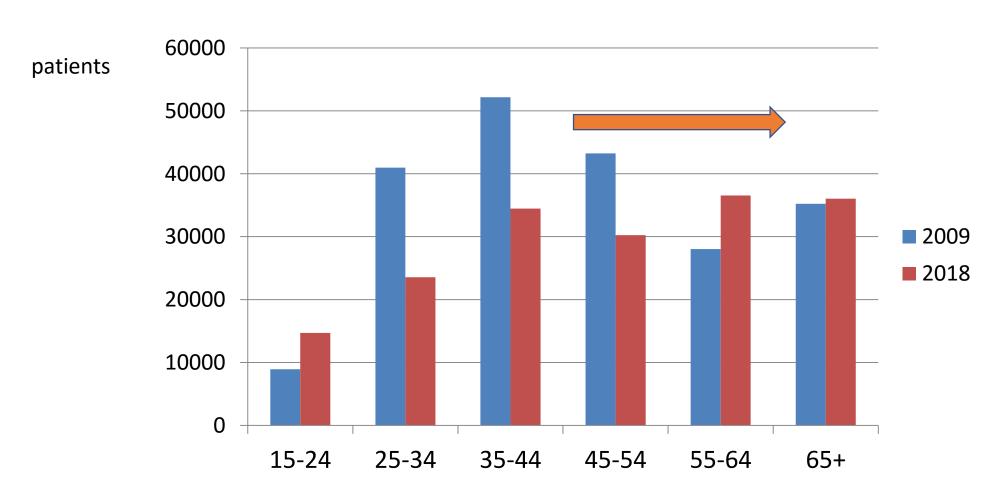
|                      | 2009/2010 survey                                                 | 2017/2018 Survey                                 |  |
|----------------------|------------------------------------------------------------------|--------------------------------------------------|--|
| Comparison condition | Study case with culture MTB confirmed using one morning specimen | Culture MTB confirmed in 70 culture cluster n=80 |  |
|                      | n=258                                                            |                                                  |  |




# Distribution of Culture positive TB prevalence by one morning sample in 2009/10 and 2017/18





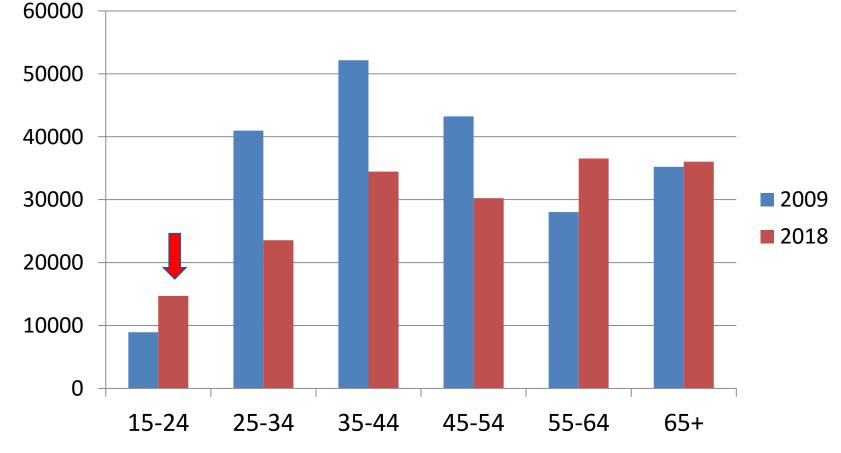

### Distribution of Culture positive TB prevalence in 2009/10 and 2017/18



Direct Comparisons by one morning culture with Ogawa media among Screen Positive: As 2<sup>nd</sup> culture gave 20% yields, the prevalence was calculated as 504 instead of published data of 613 with two samples for 2019/2010.

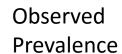


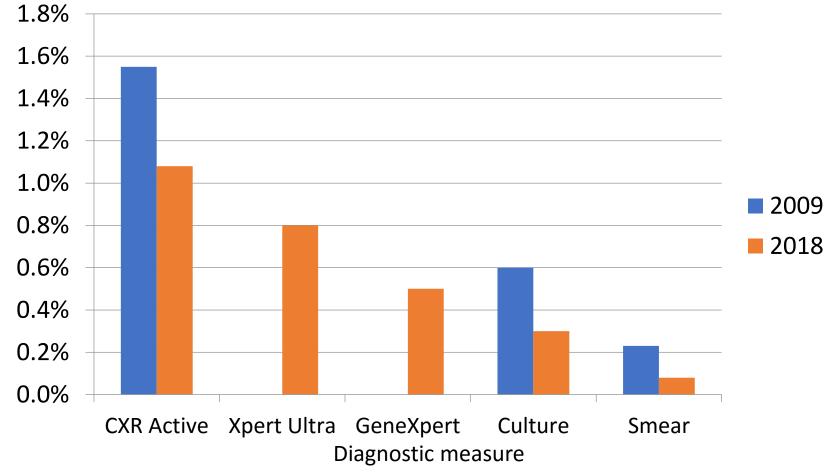
# Case Load of Active Pulmonary TB in community 2009 (Solid Culture) and 2018 (Xpert)






# Case Load 2009 (Culture) and 2018 (Xpert) 210,000 → 175,000


However, the observed prevalence in 2009 should have been much higher if we had had Xpert at that time








### Changes observed







#### **National TB Prevalence Survey results in Asia**

|                 |      | Smear | Bac Positi | Diagnostic Tool |
|-----------------|------|-------|------------|-----------------|
| Myanmar         | 2009 | 242   | 613        | Solid Culture   |
| _               | 2018 | NA    | 468        | Xpert MTB/Rif   |
| Bangl adesh     | 2008 | 79    | N A.       | Smear           |
|                 | 2015 | 113   | 287        | Xpert MTB/Rif   |
| Cambodi a       | 2002 | 437   | 1597       | Solid Culture   |
|                 | 2011 | 271   | 831        | Solid Culture   |
| Chi na          | 2010 | 66    | 119        | Solid Culture   |
| I ndonesi a     | 2014 | 257   | 759        | Solid culture   |
| Lao PDR         | 2011 | 278   | 595        | Solid Culture   |
| Mongol i a      | 2015 | 204   | 560        | Solid Culture   |
| Paki st an      | 2011 | 270   | 398        | Solid Culture   |
| Phi I I i pi ne | 2007 | 320   | 780        | Solid Culture   |
|                 | 2017 | 434   | 1159       | Xpert MTB/Rif   |
| DPRK            | 2016 | ?     | 587        | Solid Culture   |
| Thai I and      | 2012 | 104   | 242        | Solid Culture   |
| Viet Nam        | 2007 | 197   | 307        | Solid Culture   |
|                 | 2017 | TBA   | TBA        | Xpert MTB/Rif   |



#### Decline of TB

- 50% by culture, 30% by CXR active under almost same case notification levels in 2009 and 2018
- Right shift of age distribution of patients
- Symptomatic Smear Positive TB: Mostly detected by the programme
- Impact on mortality (severe cases are more likely to be detected and treated)
- Decline in States most probably owing to service expansions in last decade
- No clear evidence to show decline in Yangon compared with 2006



### Still High TB Prevalence despite of Decline

Community we are treating 96 TB has 322 GeneXpert Positive Active Pulmonary TB: Far away to End TB

TB not equally distributed

- Rural villages with poor access to TB diagnostic/treatment centers: > 20 miles from 25% of rural cluster villages to TB treatment center → decentralization of TB service to PHC level
- Old/Older populations Grandparents!! → integrated approaches with NCDs to prevent NCD care from TB by early TB detection
- Urban congestive areas Yangon!! and congestive areas in big cities — urban specific interventions
- Men!! Higher M:F ratio → TB in workplace by multi-sector approach
- Laboratory service targets (1-1.5% of population) can't catch TB patients in community



 Not included in this analysis: Sub-clinical cases in community most probably due to poor access to TB diagnosis and treatment in past decades such as Xpert Ultra Trace only, "culture negative and CXR not active".... Carry over, debt, from the past when case detection gap was larger

 Follow up data collection including treatment results will be completed soon. Re-estimation of TB burden including incidence is scheduled on 28-30 May 2019; and Final Report of the survey before JMM, 12-21 Aug 2019.



- Role of CXR
- Diagnostic use of Xpert for CXR abnormal
- Role of Private sector for case detection 
   — mandatory case notification
- Role of CBTBC
- NDRS including smear negative

etc