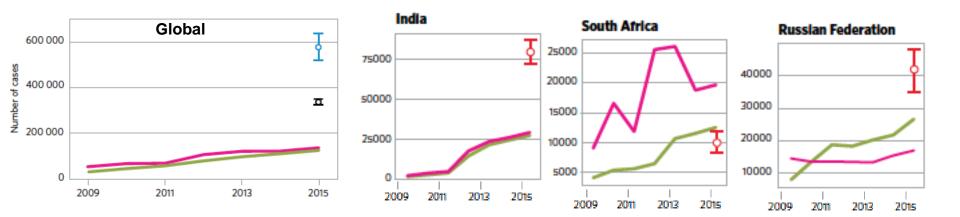
Diagnosing TB in clinical practice (including DR-TB)? Controversies, Innovation, and Challenges.

IFCC World Lab, Durban, 2017

Keertan Dheda, MB.BCh (Wits), FCP(SA), PhD (Lond), FRCP (Lond) Professor and Head: Division of Pulmonology, Department of Medicine, University of Cape Town

Conflict of interest statement: I have received speaker fees, grant funding, and/or free kits/ material from Hain Life Sciences, Alere Diagnostics, Clondiag, Orgenics, Qiagen (Cellestis), Protein Logic, Oxford Immunotec, Antrum Biotech, FIND Diagnostics, Boston Scientific, Nycomed Takeda, Novartis, Cipla, GSK, Astra Zeneca and SSI - however noneof these entities have played a role in study design or publication of data.

Overview


- TB or not TB? If TB, what is the resistance profile?
- Is the patient highly infectious? (contact tracing and infection control)
- Why does this patient have TB? (HIV, HbA1C, Cr, NCD)
- Diagnosis of LTBI (TST, IGRA and C-tb)
- **NAAT** (Gene Xpert MTB/ RIF; LPA; LAMP etc)

Retreatment cases; PPV Contact tracing and infection control Ultra cartridge

- WGS: implications for diagnostics & precision medicine
- Decentralising diagnostics to practice/ clinic or community: <u>active</u> <u>case finding & triage tests</u>

TB & drug-resistant TB: size of the problem

- □ TB top ID killer- 3 people die every minute! Over 1 billion people killed over the last 2 centuries!
- ~600 000 (540 000 to 664 000) MDR-TB (RR) cases
 globally in 2016 (~20% of TB deaths)

Global TB Report, WHO, 2016

- 2015: 51% of MDR-TB globally had resistance to either a FQ, a second-line injectable agent, or both (2017= 39% of those treated= FQ or SLID resistance)
- ~20% strains globally resistant to 1 major TB drug
 Global TB Report, WHO, 2016

THE LANCET

Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: a cohort study

Elize Pietersen*, Elisa Ignatius*, Elizabeth M Streicher, Barbara Mastrapa, Xavier Padanilam, Anil Pooran, Motasim Badri, Maia Lesosky, Paul van Helden, Frederick A Sirgel, Robin Warren, Keertan Dheda

Pietersen and Dheda, Lancet, 2014

THE LANCET—

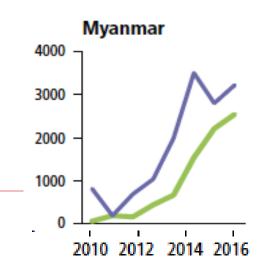
The global rise of extensively drug-resistant tuberculosis: is the time to bring back sanatoria now overdue?

Keertan Dheda, Giovanni B Migliori

Sondalo (1938) - 3500 beds

2012

Myanmar (53 million: 45% in informal housing)


- <u>Estimated burden in 2017:</u> 191 000 cases [141-249]
 Incidence: 361/ 100 000 cases (9% HIV-infected)
 (estimated MDR-TB burden= <u>13 000 (5.1% new and 27% retreatment</u>)
- □ 139 625 notified

tested for R resistance= ~15% new and 63% of previous TB)

Detected: <u>3213 MDR</u> and 0 XDR

Treated: <u>2537</u> and <u>5</u> XDR-TB (19.5 % of the total burden!!)

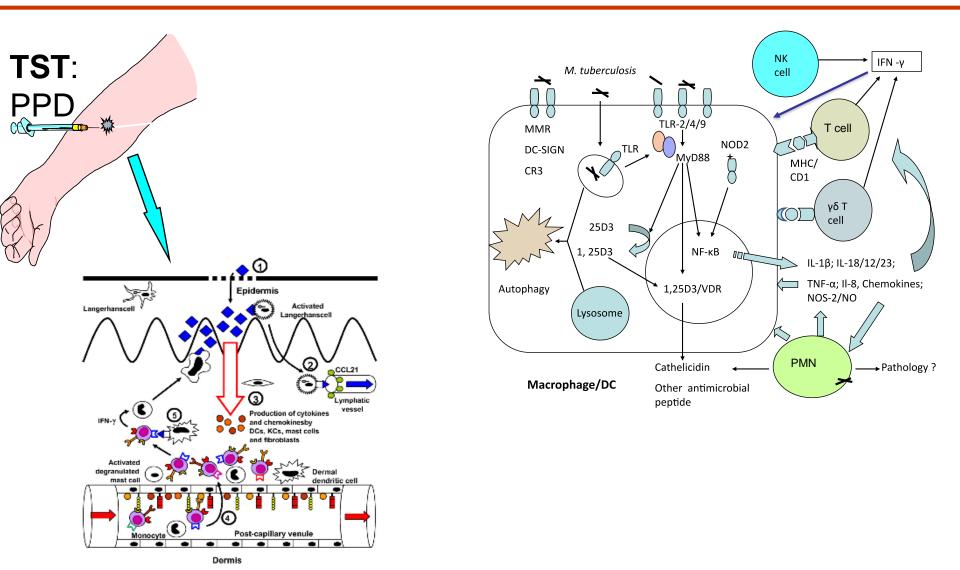
Global TB Report, WHO, 2017 (blue= detected; green= treated)

Diagnosis of LTBI

TST

- T-SPOT-TB (post overnight ELISPOT assay)
- Quantiferon-TB Gold Plus
 (post overnight ELISA readout)

C-TB (ESAT-6 and CFP-10-specific skin test)



EUROPEAN RESPIRATORY journal

OFFICIAL SCIENTIFIC JOURNAL OF THE ERS

Sensitivity of C-Tb: a novel RD-1-specific skin test for the diagnosis of tuberculosis infection

Soren T. Hoff², Jonathan G. Peter¹, Grant Theron¹, Mellissa Pascoe¹, Pernille N. Tingskov³, Henrik Aggerbeck³, Daniel Kolbus³, Morten Ruhwald², Peter Andersen^{2,4} and Keertan Dheda^{1,4} **LTBI diagnosis: detection of a memory T cell response** RD1 proteins encoded by gene segments deleted from BCG Relatively *M.tb* specific (*M. kansasii, M szulgai, M marinum.*)

Vukmanovic-Stejic M, Imm Letters, 2006

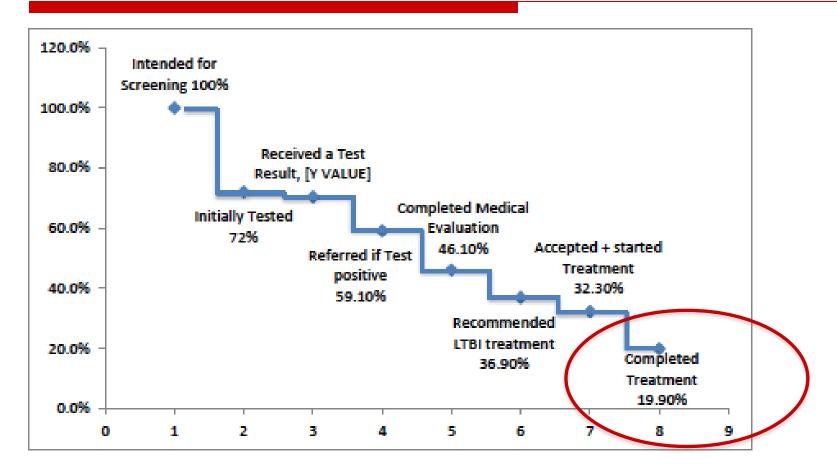
Dheda K, Respirology, 2010

Indications in low burden settings: screening for LTBI where the risk benefit ratio is likely in favour of testing + treatment

- □ Contacts of infectious TB cases at risk
- Immuno-suppressive conditions: IMID (TNF), silicosis, HIV, post transplant, dialysis (TST + IGRA)
- □ Health care workers, prisoners, homeless, drug users
- Immigrants from TB endemic countries (risk stratify when older than 35 years; high incidence= > 150/ 100 000 cases)

Dheda K, Lancet, 2016 WHO guideline on LTBI, 2015 UK NICE guideline, 2016 Public Health England, 2016 (+ Migrant screening 2016) ATS/ CDC 2000 Indications in high burden settings: screening for LTBI where the risk benefit ratio is likely in favour of testing + treatment

- □ HIV-infected persons and children under 5 years
- Contacts of infectious TB cases at risk: inform and advise (? CXR)
- Immuno-suppressive conditions: IMID (TNF), silicosis, post transplant, dialysis (TST + IGRA): cover with INH


Dheda K, Lancet, 2016 WHO guideline on LTBI, 2015 UK NICE guideline, 2016 Public Health England, 2016 (+ Migrant screening 2016) ATS/ CDC 2000 Predictive value of test +ve TST versus +ve IGRAs in longitudinal studies (2 SRs)

PPV IGRA (recommended cut-point) PPV TST (10mm cut-point) = 2.10 to 2.7% = 1.60 to 1.5%

BOTH IMPERFECT TESTS

Rangaka M, Lancet Infect Dis, 2011 Diel R, Eur Resp J, 2012

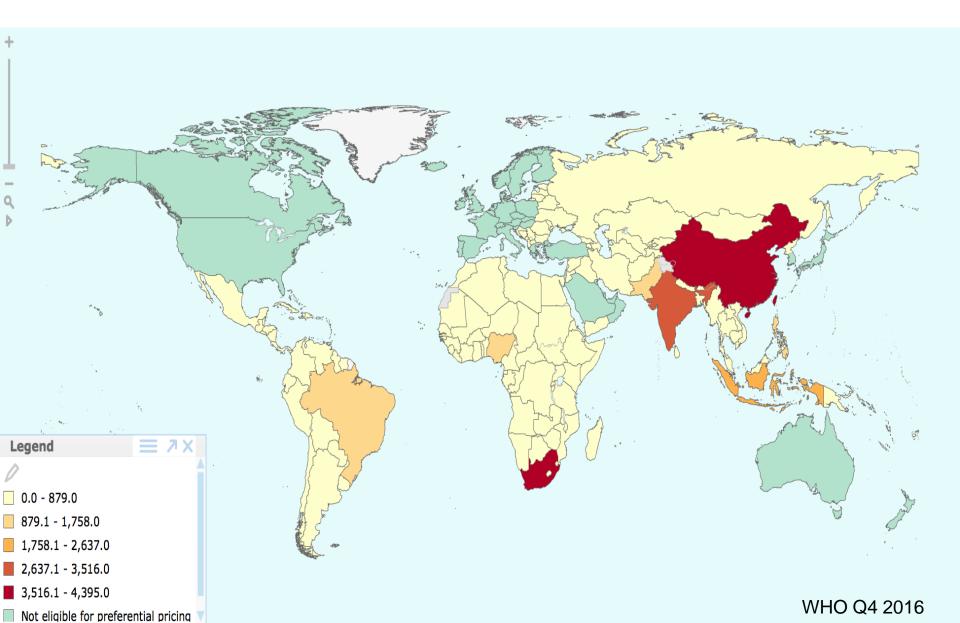
LTBI cascade

Alsdurf H, Lancet Infect Dis. 2016

Europe: Smear microscopy + culture routine

Molecular tests (NAAT): alternatives when rapid diagnosis and/ or DST required for clinical or public health reasons

(e.g. high suspicion of MDR/ XDR, or if phenotypic DST likely unavailable within 8 wks)


- Major advance
- rules-in 2/3

smear negative TB and rapid Dx of DR-TB

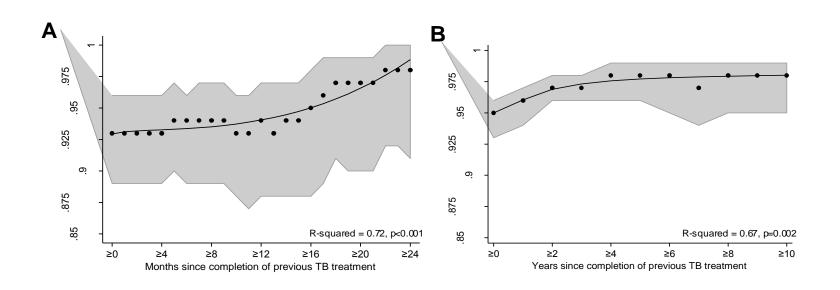
Number of Xpert modules procured

Key practice points

PPV of Rif R limited when TB incidence is low (MDR TB prevalence of 2%= PPV of 50%; 3% MDR prevalence= 60%) WHO Xpert Implementation Guidance, 2011

Those with previous TB may yield false positive Xpert results

MAJOR ARTICLE



Xpert MTB/RIF Results in Patients With Previous Tuberculosis: Can We Distinguish True From False Positive Results?

Grant Theron,^{1,2,a} Rouxjeane Venter,² Greg Calligaro,¹ Liezel Smith,¹ Jason Limberis,¹ Richard Meldau,¹ Duncan Chanda,^{1,3} Aliasgar Esmail,¹ Jonny Peter,¹ and Keertan Dheda^{1,4}

¹Lung Infection and Immunity Unit, Division of Pulmonology and University of Cape Town Lung Institute, Department of Medicine, University of Cape Town, and ²DST/NRF of Excellence for Biomedical Tuberculosis Research, and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa; ³Institute for Medical Research and Training, Lusaka, Zambia; and ⁴Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa

False positive Xpert MTB/RIF results in re-tested patients with previously confirmed tuberculosis

- Re-tested 238 Xpert +ve previously treated patients

- False-positivity rate (Xpert +ve, culture-negative) = 7% (16/238)

Duration since the initial TB episode of <2 years rules in only 50% of false +ves
Reclassifying "very low positive" to a "negative" result improved specificity [+3%(2-5%)] but reduced test sensitivity [-10%(4-15%)].

Negative PCR (e.g. Xpert) using a good sputum sample suggests no need for isolation (NPV of 99.7% for smear positivity)

Luetkemeyer AF, Clin Infect Dis, 2016

Xpert bacterial load Readouts (Ct values correlate poorly with smear positivity) The Use of An Automated Quantitative Polymerase Chain Reaction (Xpert *Mycobacterium tuberculosis*/RIF) to Predict the Sputum Smear Status of Tuberculosis Patients

Grant Theron,¹ Lancelot Pinto,² Jonny Peter,¹ Hemant Kumar Mishra,³ Hridesh Kumar Mishra,³ Richard van Zyl-Smit,¹ Surendra Kumar Sharma,³ and Keertan Dheda^{1,4,5}

Int J Tuberc Lung Dis. 2017 May 1;21(5):493-502. doi: 10.5588/ijtld.16.0702.

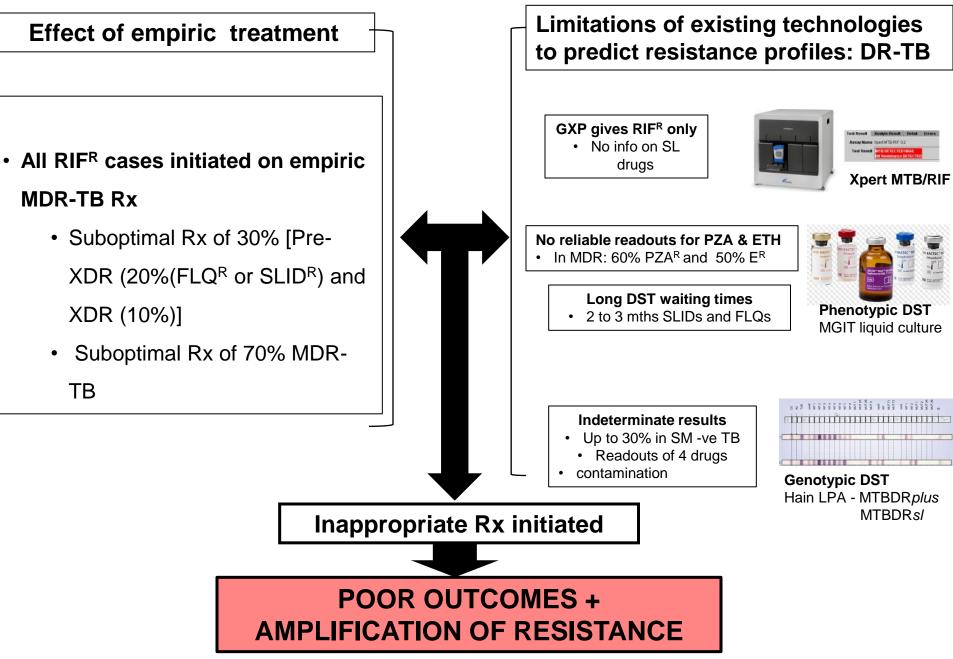
Diagnostic accuracy of the Xpert® MTB/RIF cycle threshold level to predict smear positivity: a meta-analysis.

Lange B¹, Khan P², Kalmambetova G³, Al-Darraji HA⁴, Alland D⁵, Antonenka U⁶, Brown T⁷, Balcells ME⁸, Blakemore R⁹, Denkinger CM¹⁰, Dheda K⁷, Hoffmann H⁶, Kadyrov A³, Lemaitre N¹¹, Miller MB¹², Nikolayevskyy V¹³, Ntinginya EN¹⁴, Ozkutuk N¹⁵, Palacios JJ¹⁶, Popowitch EB¹², Porcel JM¹⁷, Teo J¹⁸, Theron G¹⁸, Kranzer K¹⁹.

REPORT FOR WHO

A multicentre non-inferiority diagnostic accuracy study of the Ultra assay compared to the Xpert MTB/RIF assay

Version 1.8 / February 2017


		Sensitivity (95%CI)	Specificity	
	Pooled	Smear- negative	HIV-	HIV+	(95%CI) [′]
Xpert	82.9% (78.8, 86.4)	44.5% (35.4, 53.9)	89.3% (83.1, 93.7)	75.5% (65.8, 83.6)	98% (96.8, 98.8)
Ultra	87.8% (84.2, 90.9)	61.3% (52, 70.1)	90.6% (84.7, 94.8)	87.8% (79.6, 93.5)	94.8% (93, 96.2)

Sensitivity of Xpert ULTRA compared to Xpert MTB/RIF in smear negative samples that are *M.tb* culture positive (n = 87)

performa nce with Cls and numbers	Xpert MTB/RIF	Xpert ULTRA	P-value		GeneXpert. Xpert® MTB/RIF Ultra
All Patients	63.4% (51.8, 73.7) 45/71	78.4% (68.4, 85.9) 65/83	P = 0.0496	+15%	1134:1454 2134:1454 2134:1454
HIV Un- infected	72.5% (54.3, 85.4) 21/29	85.4% (71.6, 93.2) 35/41	P = 0.2305	+13%	Canal
HIV Infected	57.2% (42.3, 70.9) 24/42	70.8% (55.6, 82.4) 29/41	P = 0.2548	+ 13%	

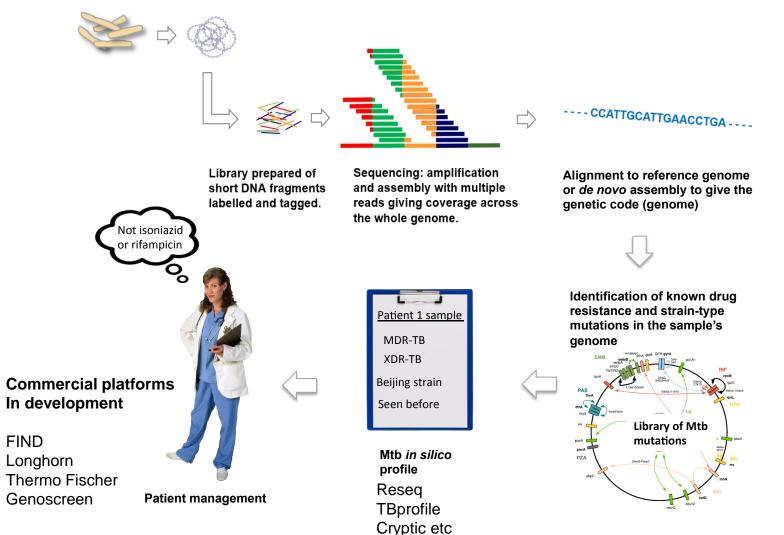
- Xpert ULTRA cartridge
 - 2 amplification targets (IS6110 &1081)
 - Larger DNA reaction chamber
 - Addition of 'trace' detection readout
 - Improved fluidics and amplification
 - Melt curve analysis for RIF resistance
 - Ultra LOD is 15.6 CFU (vs 114 CFU for Xpert)

Esmail & Dheda, in preparation

We therefore need a full drug sensitivity profile at diagnosis

SCIENTIFIC **REPORTS**

Received: 11 May 2015 Accepted: 04 November 2015 Published: 10 February 2016

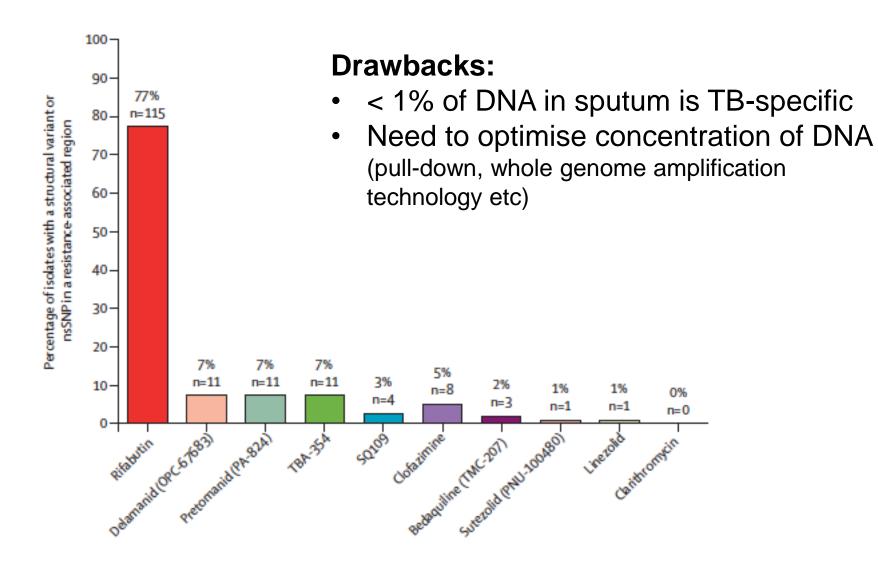

OPEN The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates

> Michele Tomasicchio^{1,*}, Grant Theron^{2,1,*}, Elize Pietersen¹, Elizabeth Streicher², Danielle Stanley-Josephs², Paul van Helden², Rob Warren² & Keertan Dheda^{1,3}

Rule in XDR-TB in 78% of cases

Next generation WGS: precision medicine the next diagnostic frontier

Bacterial DNA extracted and purified.


Dheda K, Lancet Resp Med, 2017

THE LANCET Respiratory Medicine

Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study

2017

Keertan Dheda*, Jason D Limberis*, Elize Pietersen, Jody Phelan, Aliasgar Esmail, Maia Lesosky, Kevin P Fennelly, Julian te Riele, Barbara Mastrapa, Elizabeth M Streicher, Tania Dolby, Abdallah M Abdallah, Fathia Ben-Rached, John Simpson, Liezel Smith, Tawanda Gumbo, Paul van Helden, Frederick A Sirgel, Ruth McNerney, Grant Theron, Arnab Pain, Taane G Clark†, Robin M Warren†

Dheda K, Lancet Resp Med, 2017

GAPS AND DROPOUTS

Patients who reached government diagnostic centres	1,938,027	
Patients diagnosed with TB	1,629,906	
Patients registered for treatment	1,417,838	
Patients who completed treatment	1,221,764	
Patients relapse-free one year after treatment	1,049,237	

Subbaraman R, PLoS Med, 2017

4.26 million (41%) of ~10.4 million new cases in 2015 went undiagnosed or unreported (worse for DR-TB= drivers of transmission)

RCT of Xpert versus smear microscopy (n=1500 in 4 countries in Africa)

Feasibility, accuracy, and clinical effect of point-of-care Xpert $\rightarrow \mathscr{D}^{\dagger}$ () MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial

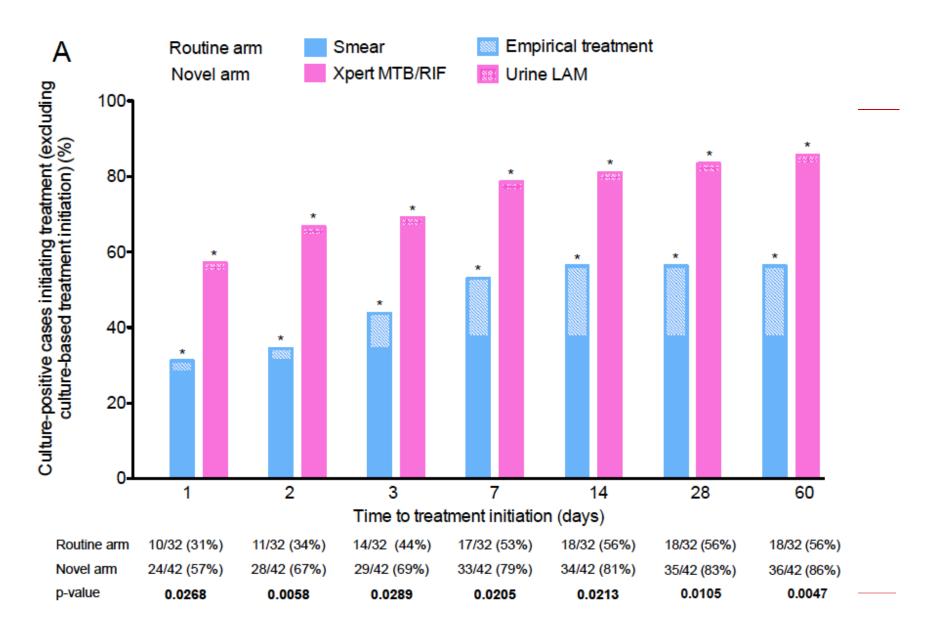
Grant Theron, Lynn Zijenah, Duncan Chanda, Petra Clowes, Andrea Rachow, Maia Lesosky, Wilbert Bara, Stanley Mungofa, Madhukar Pai, Michael Hoelscher, David Dowdy, Alex Pym, Peter Mwaba, Peter Mason, Jonny Peter, Keertan Dheda, for the TB-NEAT team*

 Feasible at POC in a clinic and significantly reduces patient drop out Theron & Dheda, Lancet, 2014

THE LANCET Infectious Diseases

Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomised controlled trial

Gregory L Calligaro*, Lynn SZijenah*, Jonathan G Peter, Grant Theron, Virginia Buser, Ruth MdNerney, Wilbert Bara, Tsitsi Bandason, Ureshnie Govender, Michele Tomasicchio, Liezel Smith, Bongani M Mayosi, Keertan Dheda



Mobile Clinic for Kids' Heart-health

1

www.lifefounda

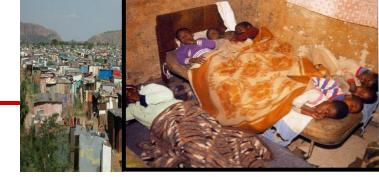
National Institutes of Health

Xpert OMNI

- A POC version of Gene Xpert
- Small and portable single cartridge system – ideal for a mobile mini clinic
- Battery operated (up to 12 hours) no need for external power supply

Pore Sequencing

NanoPore MinIon


- Small, USB powered device that can be run with a laptop
- Rapid workflows for some sample types
 - <10 minutes to prepare samples for sequencing</p>
 - Sequencing results can be analysed "in real time"
- Higher error rate than Illumina and PacBio platforms

Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples

MinION

Antonina A. Votintseva, "Phelim Bradley," Louise Pankhurst," Carlos del Oje Elias," Matthew Loose, "Kayzad Nilgiriwala," Anirvan Chatterjee," E. Grace Smith," Nicolas Sanderson, "Timothy M. Walker," Marcus R. Morgan," David H. Wyllie,"A. A. Sarah Walker," TIm E. A. Peto," Derrick W. Crook," "Ozamin Itaba".

<u>Xpert</u> – feasible if placed in a clinic but does not impact TB burden. Rule-in test. PPV. Re-treatment cases.

□ LTBI: PLHIV and children under 5 years (no TST needed)

- WGS (precision medicine): need to enable sequencing from sputum; more data needed about impact
- For real impact on burden need <u>ACF</u> and triage testing:major research challenge remains the development of a <u>low cost non-sputum-based screening test</u>

LIIU 2015

Funding Agencies:

