Antimicrobial Resistance Rational Antibiotic Therapy

Professor Zaw Lynn Aung

Professor/ Head Department of Medicine University of Medicine (1) Yangon

20-1-2018

Case scenario

- A 80 year old man, a know case of COPD and old stroke, presented with breathlessness, cough with mucoid sputum and fever for one week.
- On examination, the patient was thin, frail, confused and dyspneic, febrile, bilateral crepts and rhonchi in both lung fields.
- Diagnosed as Infective exacerbation of COPD.
- Treated with Nebulised bronchodilators and Empirical antibiotics (Cefuroxime and Azithromycin) and steroids.

20th Jan 2018

		Ward Medical		Lab Ref.No	Reported Date 14/1/2018			
				P201801110281			- Andrews	
Requested for- Sputur	n Culture	e And Sent	sitivity		1000			
Type of sample Macroscopic Examination Th Microscopic Examination	on	Sputum						tum
C8 ZN stain examination Culture Result				egative bacilli (+)Gram positiv Klebsiella pneumoniae isolati		in pairs(+)		
Antibiotic	s	SS	R	Antibiotic	S	SS	R	
Amikacin			V	Gentamicin				
Cefoxitin				Imipenem			V	
Amoxycillin/Calvulanic	1000		~	Kanamycin				
Ampicillin	1.1			Levofloxacin			V	
Azithromycin	-			Ticarcillin/Clavulanic Acid				
Cefepime				Norfloxacin				
Cefoperazone/Sulbactam	1000000		V	Ofloxacin			V	
Cefotazime			and the second	Oxacillin		1	1 100 100	
Ceftazidime	1000		V	Penicillin	and the second second			
Ceftriaxone		10000		Tetracycline	E GAL			
Cefuroxime	1		10000	Vancomycin	-	1. 1. 1. 1. 1.		
Cephalothin		1 2 2 2	200	Piperacillin / Tazobactam	1000		C. Statistica	
Chloramphenicol		Station Station	1000	Netilmicin	10000		10.00	
Ciprofloxacin			1000	Cefixime		10 10 15	V	1
Clindamycin	-		10000	NalidixicAcid	1000	-		3
Cotrimoxazole		-	1000	Linezolid	1000			1
				Ampicillin/Sulbactam				and the second second

What is antimicrobial resistance?

 Antimicrobial resistance is the ability of a microorganism (like bacteria, viruses, and some parasites) to stop an antimicrobial (such as antibiotics, antivirals and antimalarials) from working against it. As a result, standard treatments become ineffective, infections persist and may spread to others.

20th Jan 2018

4

WHO 10 facts on antimicrobial resistance

What causes drug resistance?

- Drug resistance is a natural evolutionary phenomenon.
- When microorganisms are exposed to an antimicrobial, the more susceptible organisms succumb, leaving behind those resistant to the antimicrobial.

20th Jan 2018

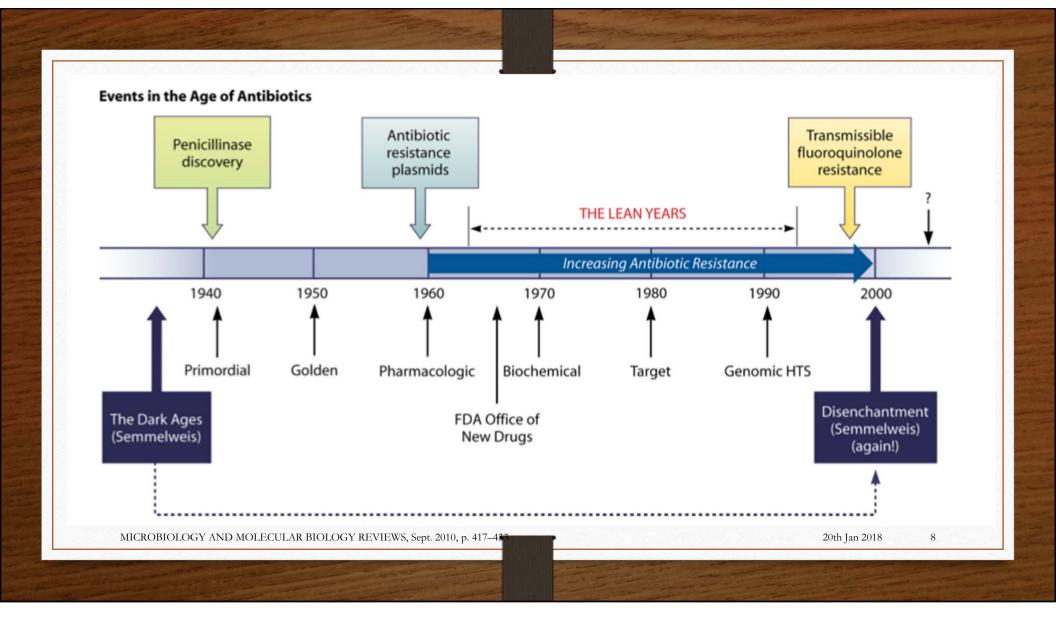
5

• They can then pass on their resistance to their offspring.

Drug Resistance

Drug resistance occurs in

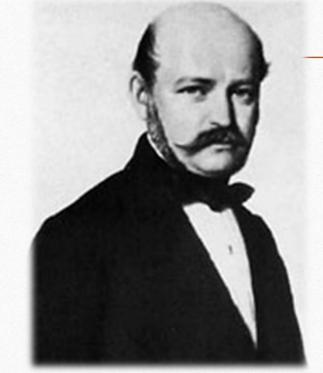
- Bacteria Antibiotic resistance
- Endoparasites
- Viruses
- Fungi
- Cancer cells


20th Jan 2018

Antibiotic Resistance

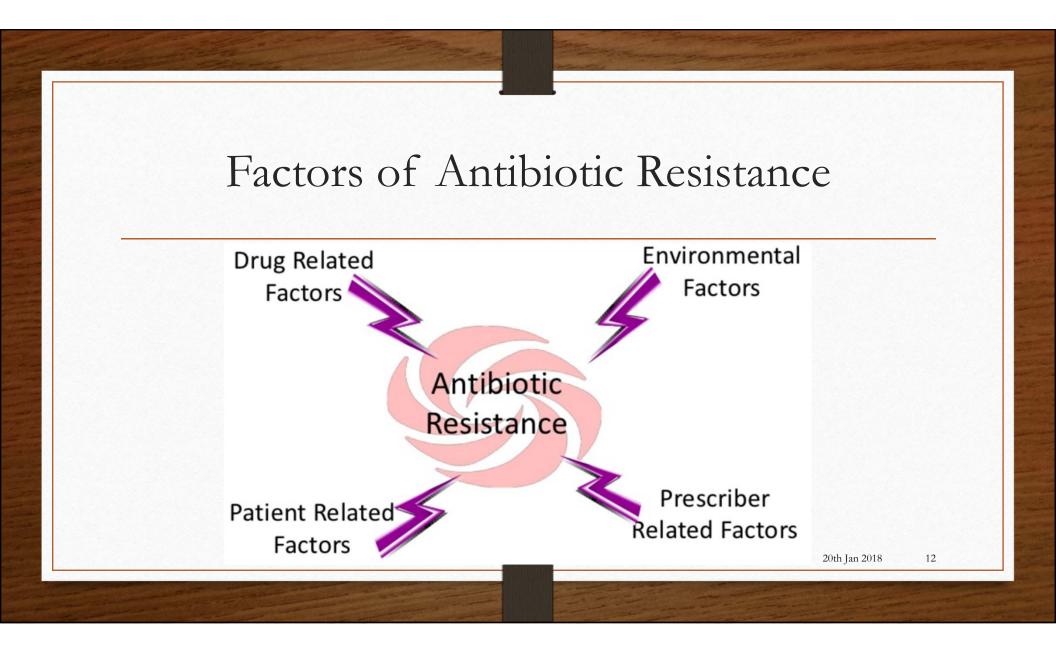
• Defined as micro-organisms that are not inhibited by usually achievable systemic concentration of an antimicrobial agent with normal dosage schedule and or fall in the minimum inhibitory concentration (MIC) range.

Antibiotic resistance = MIC > Toxic plasma concentration


20th Jan 2018

The dark ages	• The preantibiotic era
Primordial	• The advent of chemotherapy, via the sulfonamides
Golden	• The halcyon years when most of the antibiotics used today were discovered
Pharmacologic	• Attempts were made to understand and improve the use of antibiotics by dosing, administration, etc.
The lean years	• The low point of new antibiotic discovery and development
MICROBIOLOGY AND MOLECULAR BIOLOGY RE	VIEWS, Sept. 2010, p. 417–4 33 20th Jan 2018 9

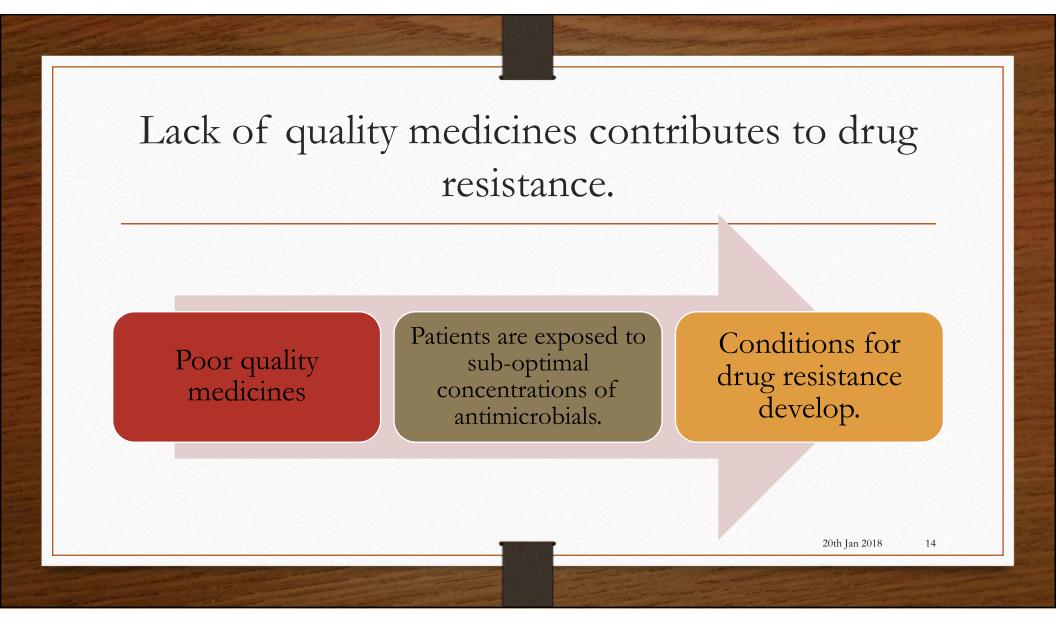
Biochemical	• Knowledge of the biochemical actions of antibiotics and resistance mechanisms led to chemical modification studies to avoid resistance
Target	• Mode-of-action and genetic studies led to efforts to design new compounds
Genomic/HTS	• Genome sequencing methodology was used to predict essential targets for incorporation into high-throughput screening assays
Disenchantment	• With the failure of the enormous investment in genome-based methods, many companies discontinued their discovery programs.


Events in the age of antibiotics

• Before antibiotics were discovered, *Semmelweis* advocated hand washing as a way of avoiding infection; this practice is now strongly recommended as a method to prevent transmission.

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Sept. 2010, p. 417-43

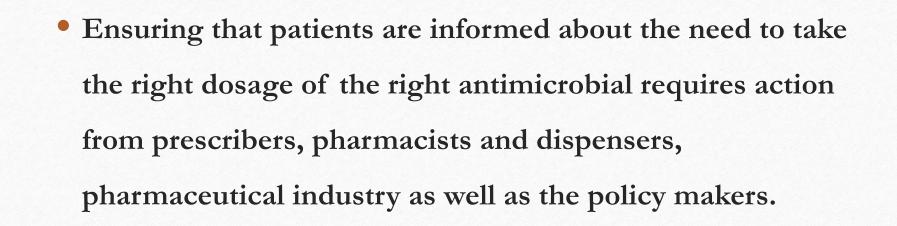
20th Jan 2018 11



Drug Related Factors

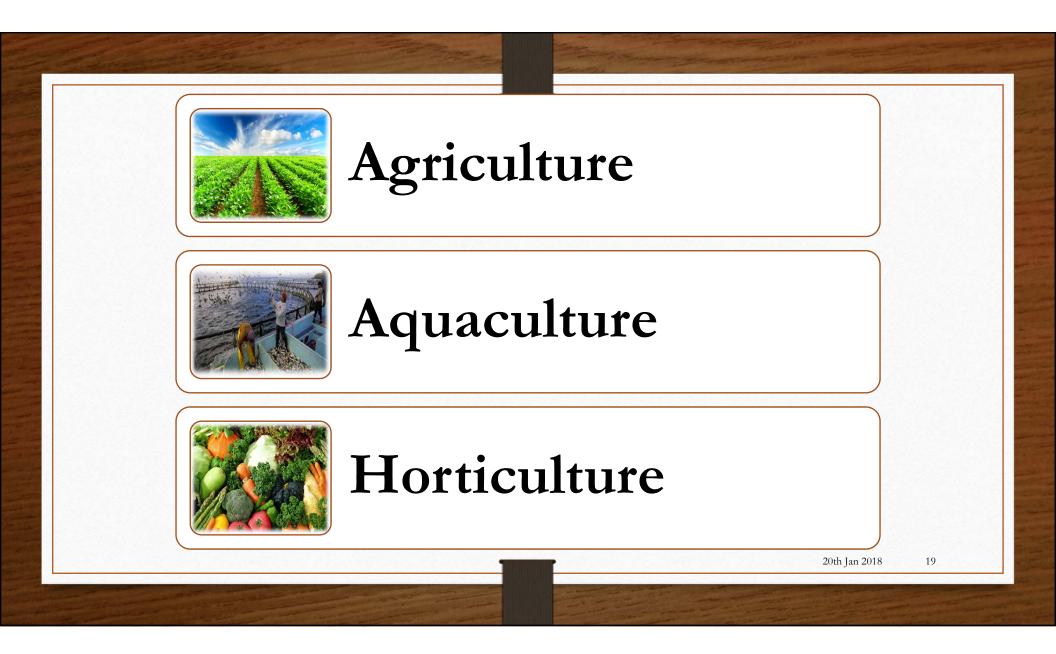
- Over the counter availability of antimicrobials
- Counterfeit and substandard drugs causing sub-optimal blood concentration
- Irrational fixed dose combination of antimicrobials
- Soaring use of antibiotics

20th Jan 2018


Patient Related Factors

- Poor adherence of dosage regimens
- Poverty
- Lack of sanitation concept
- Lack of education
- Self-medication
- Misconception

20th Jan 2018 15


20th Jan 2018

Environmental related factors 20th Jan 2018 17

Animal husbandry is a source of resistance to antibiotics.

- Sub-therapeutic doses of antibiotics are used in animal-rearing for promoting growth or preventing diseases.
- This can result in resistant microorganisms, which can spread to humans.

20th Jan 2018

Prescriber Related Factors

- Inappropriate use of available drugs
- Increased empiric poly-antimicrobial use
- Overuse of antimicrobials (Available without prescription)
- Inadequate dosing
- Lack of current knowledge and training

Inappropriate use of medicines worsens drug resistance.

- Inappropriate use of antimicrobials drives the development of drug resistance.
- Both overuse, underuse and misuse of medicines contribute to the problem.

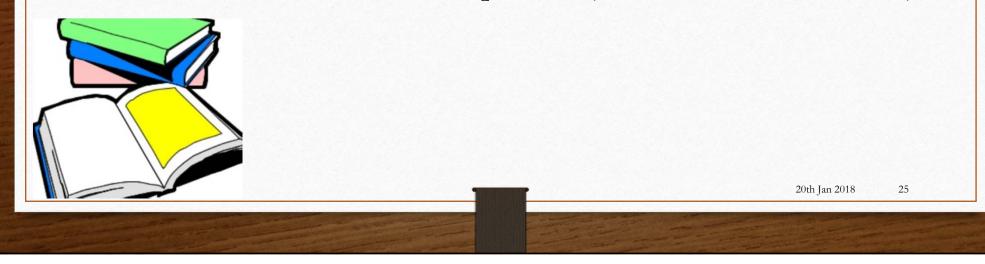
20th Jan 2018

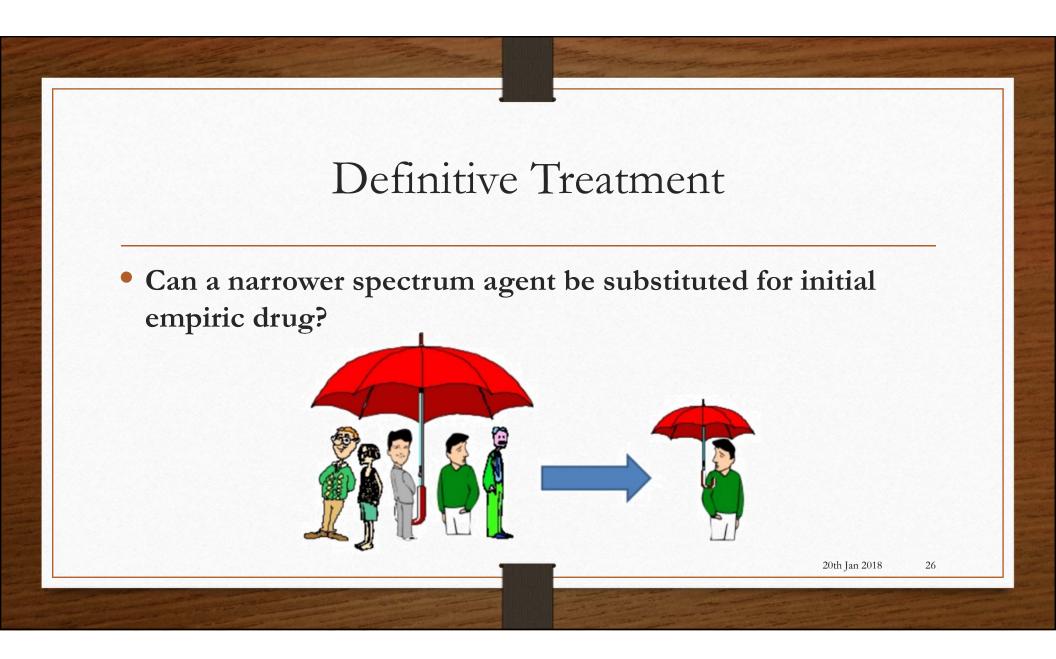
A Guide to Antibiotic Prescribing

Start smart:

- 1 Do not prescribe² antibiotics in the absence of clinical evidence of bacterial infection, or for a self-limiting condition. Take time to discuss:
 - why an antibiotic is not the best option
 - alternative options, eg symptomatic treatment, delayed prescribing
 - the views and expectations of the patient
 - safety-netting advice: what the patient should do if their condition deteriorates.

Before prescribing empirical antibiotics....


• Clinician should first determine whether antimicrobial therapy is warranted for a given patient.


20th Jan 2018

- Is antimicrobial agents indicated on the basis of clinical findings?
- Is it prudent to wait until such clinical findings become apparent?
- Can some simple bedside tests done to confirm your suspicion?
 - Microscopy
 - Gram staining

Empirical Antimicrobial Selection

- What are the likely etiologic agents for the patient's illness?
- Is there clinical evidence (from clinical trials) that antimicrobial therapy will confer clinical benefit for the patient? (Evidence based medicine)

2 Take microbiological samples *before* prescribing,¹ especially for:

- hospital in-patients: review your prescription as soon as MC&S result is available
- recurrent or persistent infection
- non-severe infection: consider if your prescription can wait for мс&s results.
- 3 Follow local guidelines first: best practice is informed by local epidemiology and sensitivities.

4 Consider benefit and harm for each individual patient:

- Allergies: clarify the patient's reaction—the true incidence of penicillin allergy in patients who report that they are allergic is <10%. In those with a confirmed penicillin allergy, cross-reactivity with 3rd-generation cephalosporins and carbapenems is possible but rare (<1%).
- Dose adjust for renal function and weight: use ideal body weight in extremes of BMI (or ideal weight plus a % of excess weight—see local guidelines).
- Check for medication interactions.

OHCM 10th Ed

- In pregnancy and lactation, see p17.
- **5** Prescribe the shortest effective course. Most antibiotics have good oral availability. Use IV antibiotics only if in line with local or national (sepsis) guidelines.

20th Jan 2018

Route of administration

- The route of administration of an antibacterial often depends on the severity of the infection.
- Life threatening infections require intravenous therapy.
- Antibacterials that are well absorbed may be given by mouth even for some serious infections.
- Parenteral administration is also appropriate when the oral route cannot be used (e.g. because of vomiting) or if absorption is inadequate.

Duration of therapy

- Duration of therapy depends on the nature of the infection and the response to treatment- can be assessed by procalcitonin level.
- Courses should not be unduly prolonged because they encourage resistance, they may lead to side-effects and they are costly.

Duration of therapy

- However, in certain infections such as tuberculosis or osteomyelitis it may be necessary to treat for prolonged periods.
- Conversely a single dose of an antibacterial may cure uncomplicated urinary-tract infections. The prescription for an antibacterial should specify the duration of treatment or the date when treatment is to be reviewed.

20th Jan 2018

31

BNF 70

Then focus: Review the clinical diagnosis and continuing need for antibiotics at 48h for all inpatients and all patients prescribed IV antibiotics: Stop antibiotics if there is no evidence of infection. Switch from IV to oral whenever possible. Change to a narrower spectrum antibiotic whenever possible. Continue regular clinical review whilst antibiotics are prescribed.

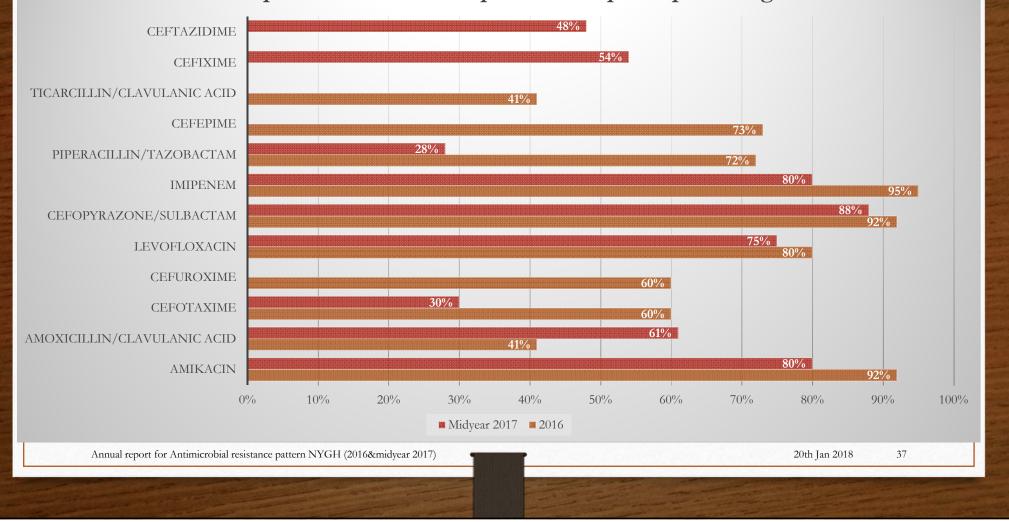


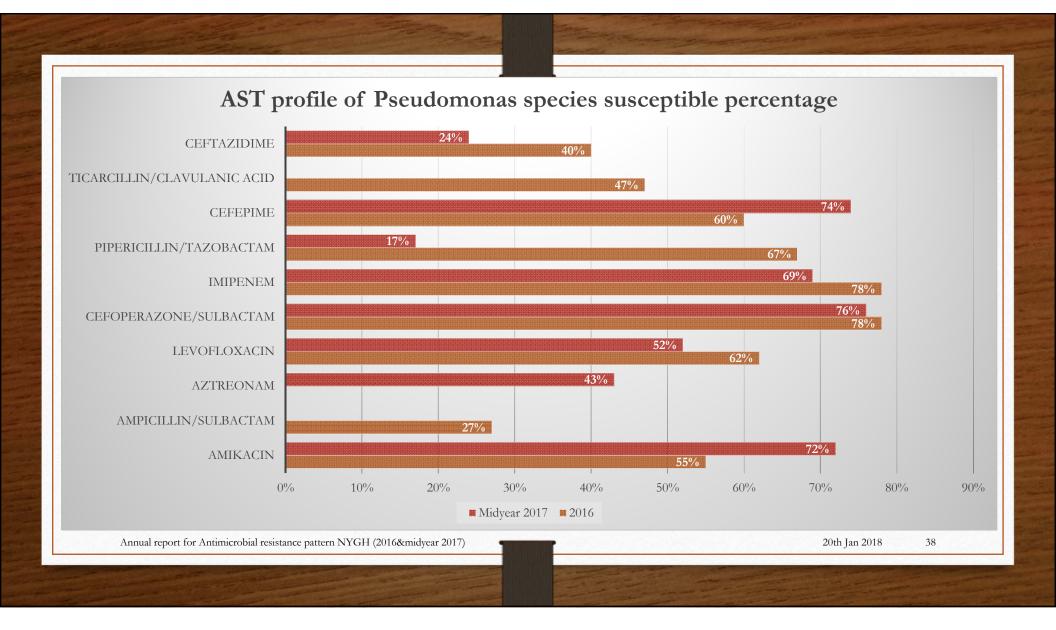
Hospital Acquired Drug Resistance

- Hospital Antibacterial Policy
- Hospital Antibiogram
 - Hospital specific antibacterial resistance pattern
 - Identification of potential pathogen most likely to cause infection
 - Previous antibacterial therapy
- Prescription auditing

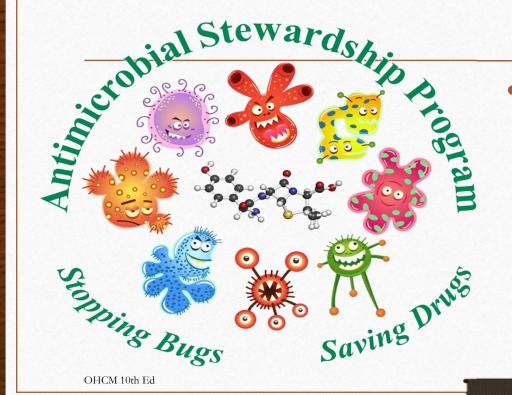
20th Jan 2018 33

NYGH Antibiogram




Growth of organisms in cultured specimens from Medical ward, NYGH (2016 & Midyear 2017)

Organisms (2016)	No of culture positive specimens
E coli	81
Klebsiella	212
Pseudomonas species	45
Proteus species	3
Acinetobacter	0
Staphlococcus species	15
Annual report for Antimicrobial resistance pattern NYGH (2016&midyear 2017)	20th Jan 2018 35


Organisms (Midyear 2017)	No of culture positive specimens
E coli	54
Klebsiella	103
Pseudomonas species	41
Proteus species	1
Acinetobacter	4
Staphlococcus species	12
Citrobacter species	22
Enterobacter species	1
Coliform	4
Annual report for Antimicrobial resistance pattern NYGH (2016&midyear 2017)	20th Jan 2018 36

AST profile of Klebsiella species susceptible percentage

Antibiotic Stewardship

• Antibiotic stewardship refers to a set of coordinated strategies to improve the use of antimicrobial medications with the goal of enhancing patient health outcomes, reducing resistance to antibiotics, and decreasing unnecessary costs.

20th Jan 2018 39

1. Dellit TH, et al. Clin Infect Dis 2007; 44: 159-177.

Important Factors to be considered

20th Jan 2018

- Commitment
- Surveillance
- Research
- Infection Control
- Rational Prescribing
- Drug Quality

DRUG RESISTANCE

THANK YOU!!

No action today, no cure tomorrow IRRATIONAL DRUG USE

NO COMMITMENT

DRUG RESISTANCE

Licr of a second

MUNT SURVEILLANCE