



# **HIV and Haematology**

Htun Lwin Nyein 2018



#### **Outline**

- HIV and Cytopenia
- HIV and Lymphadenopathy
- HIV and Coagulopathy
- HIV and Immunotherapy

# The haematological features of HIV infection

- Infection by the HIV and the consequent fully developed AIDS can have profound haematological effects in
  - the primary infection period
  - the phase of clinical latency, and
  - patients with advanced disease

# **HIV and Cytopenia: Prevalence**

| Cytopenia        | Asymptomatic HIV (%) | Advanced HIV (%) |
|------------------|----------------------|------------------|
| Anemia           | 10-20                | 70-80            |
| leucopenia       | 20                   | 85               |
| Neutropenia      | 0-10                 | 20-60            |
| Lymphopenia      | 10                   | 65-80            |
| Thrombocytopenia | 5-20                 | 25-50            |

# Etiology of Cytopenia in HIV-Multiple factors Involved

- Haematopoietic stem cell not infected
- More committed myeloid progenitor cells:
  - may be infected
  - functionally abnormal
  - exhibit marked decreased colony growth
- Altered bone marrow microenvironment

# **HIV and CBC Study in Myanmar**

| Study parameters                           | Rai Mra (1993) | Hutn Lwin Nyein (2001) |
|--------------------------------------------|----------------|------------------------|
| Total patients                             | 63             | 147                    |
| M:F                                        | 3:1            | 15:1                   |
| Mean age                                   | 30 yrs         | 25 yrs                 |
| Anemia (Hb≤ 10 g/dl))                      | 60 %           | 42 %                   |
| Normocytic                                 | 60%            | 65%                    |
| Leukopenia (< 4x10 <sup>9</sup> /L)        | 25%            | 20%                    |
| Neutropenia (< 2x10 <sup>9</sup> /L)       | 22%            | 14%                    |
| Lymphopenia (< 1.5x10 <sup>9</sup> /L)     | 70%            | 60%                    |
| Monocytopenia (< 2x10 <sup>9</sup> /L)     | 22%            | 29%                    |
| Thrombocytopenia (<150x10 <sup>9</sup> /L) | 28%            | 22%                    |
| Pancytopenia                               | 8%             | 18%                    |

#### **HIV** and Anemia

#### Anemia:

- is most common hematological abnormality.
- Is an expression of active immune activation.
- Is associated with disease progression and decreased survival.

#### **Causes and Mechanisms of Anemia in HIV**

| Causes of Anemia                                            | Mechanisms                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ↓ Red Cell Production (↓retic count, Normal/↓ ID bilirubin) | <ul> <li>A. Normocytic <ul> <li>bone marrow infiltration(NHL, KS)</li> <li>infection(MAC,TB,CMV,B19,Fungal)</li> <li>HIV</li> </ul> </li> <li>B. Microcytic: IDA (chronic blood loss)</li> <li>C. Macrocytic: Drugs(AZT, Chemo,RBV)</li> </ul> |
| Ineffective production<br>(↓retic count, ↑ID bilirubin)     | Folate/ B12 deficiencies                                                                                                                                                                                                                       |
| 个 Red Cell Destruction<br>(个retic count, 个 ID bilirubin)    | + AIHA + hemophagocytic syndrome + TTP + DIC + oxidative drugs: Dapsone, Sulpha                                                                                                                                                                |

## **Treatment Options of Anemia in HIV**

- Correct the underlying causes:
  - treatment of Ols
  - stop implicated drugs
  - hematinics replacement in deficiencies
- ART
- Blood transfusion
- rHuEPO therapy

## **HIV** and Leucopenia

- Lymphopenia and Neutropenia commonly.
- Impaired granulopoiesis.
- Neutrophil function abnormalities.
- Autoimmune destruction.
- Peripheral blood film:

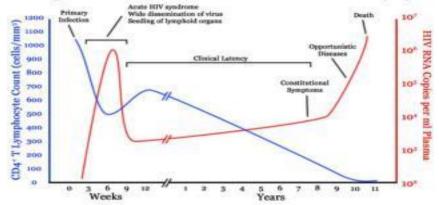
Hypopigmentation, Shift to the left, peudo-pelgar huet and other dysplastic changes.

## **HIV and Neutropenia**

# Aetiology of Neutropenia

- Disseminated fungi may infiltrate bone marrow.
- Lymphomas produce pancytopenia through diffuse bone marrow involvement.
- Cytomegalovirus infection directly infects marrow stromal elements and myeloid cells.
- Anti neutrophil antibodies detected in 1/3<sup>rd</sup>
- HIV itself is a mediator of abnormal hematopoiesis in all cell lines.
- Direct infection of hematopoietic precursors
- Aberrations of local cytokine and growth factor signaling,
- Changes in the bone marrow stroma.
- ↓ (G-CSF)

# **HIV and Neutropenia**

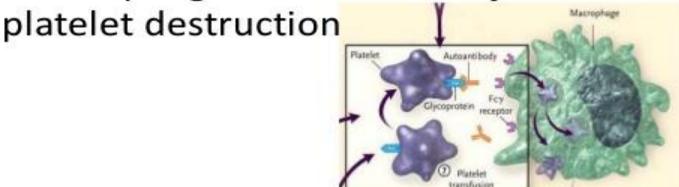

#### Mechanism:

- : ↓ colony growth CFU-GM
- : soluable inhibitory substance
- : ↓ G-CSF level
- : medications- AZT, TMP-SMX, Ganciclovir
- Risk of infection increased at ANC < 1x10<sup>9</sup>/l
- Treatment: stop implicated drugs, aggressive treatment of infection and use of G-CSF

# **HIV and Thrombocytopenia**

#### THROMBOCYTOPENIA

- Common 40% at some time
- May occur at any period of infection
- Worse with progressive immunosuppression




- Two groups:
  - primary HIV-associated thrombocytopenia
  - secondary thrombocytopenia

## **HIV and Thrombocytopenia**

# Pathogenesis of thrombocytopenia

Macrophages in the RES major mediators of



- HIV transcripts directly infect megakaryocytes
- ↓ in platelet production.
- † apoptosis of megakaryocytes
- A spontaneous remission rate of almost 20 % in patients with PHAT.

## **HIV and Thrombocytopenia**

- Primary HIV associated ITP: autoimmunity(cross reactivity between HIV gp160/120 and PLT gp IIb/IIIa)
- May occur early and at any time during course
- Generally correlates with degree of immunosuppression
- Risk increases with  $\downarrow$ CD4 count, untreated VIV, age>50 yrs, IDU, black race, anemia and with HCV co-infection.
- Treatment: ART(AZT), Steroid ± rituximab, IVIG, Anti-Rh Ab,
  - : TPO receptor agonists
  - : stop implicated drugs
  - : Splenectomy

### **Causes of Bone Marrow Suppression in HIV**

| Infections/Tumours                                                                                                    | Medications                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIV infection Mycobacterium infection Fungal infection Parvovirus B19 infection Lymphoma Myeloma Secondary metastasis | ART: AZT ddI, d4T Anti-viral: Ganciclovir, Forscanat Anti-fungal: Flucytosine, Amphotericin Anti-PCP: TMX-SMX, Pyrimethamine Anti-neoplastic: Chemotherapy Immune modifier: Interferon |

## **HIV and Coagulopathy**

- Thrombotic Thrombocytopenic Purpura(TTP)
- Thrombosis
- Antiphospholipid syndrome
- Acquired protein S deficiency

# Thrombotic thrombocytopenic purpura (TTP)

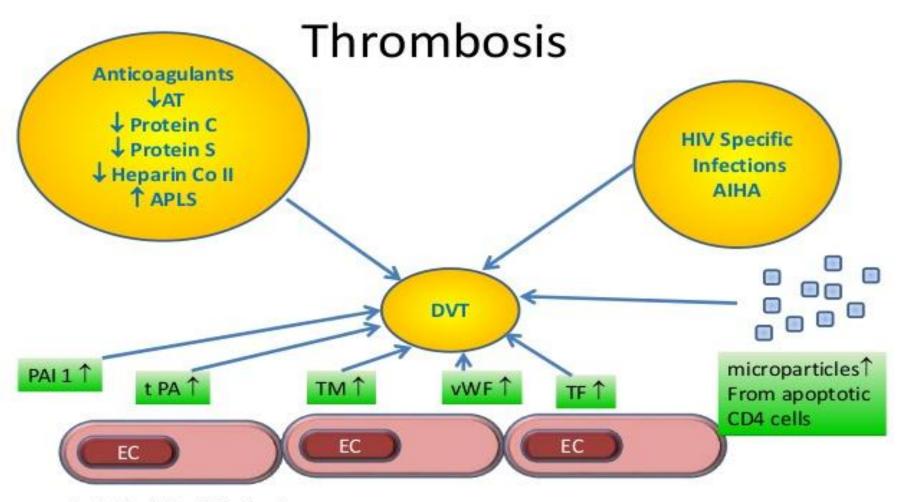
- Big five of TTP
  - Red cell fragmentation
  - Thrombocytopenia
  - Fluctuating neurological disturbances
  - Renal failure
  - Fever



#### **HIV and TTP**

Is a very serious but rare complication.

| Pantad           | Laboratory                                      |
|------------------|-------------------------------------------------|
| Fever            | Progressive anemia                              |
| Neurological     | Progressive thrombocytopenia                    |
| Renal failure    | Blood film: hemolytic picture, schizocytes      |
| Hemolytic anemia | Evidence of hemolysis(个LDH/ Retic/ID bilirubin) |
| Thrombocytopenia | ↑ creatinine                                    |
|                  | Normal coagulation parameters                   |


• Treatment: Plasma exchange, Steroid, ART, Rituximab

#### **HIV and Thrombosis**

#### **Risk factors:**

- Age > 45 yrs old
- Ois, CMV retinitis
- Malignancies
- AIHA
- Hospital immobility
- Use of megestrol/ estrogen
- APS, acquired protein S def, 个Factor VIII/Fibrinogen
- Hyperlipidemia

#### **HIV and Thrombosis**



Endothelial cell Activation

#### **HIV** and CBC

CBC finding suggestive of HIV infection are:

Unexplained anemia,

leucopenia/lymphopenia, ± eosinophilia, thrombocytopenia singly or in combination.

- Thrombocytopenia may occur early and is sometime the first manifestation.
- Anemia and neutropenia/lymphopenia develop later, and with progression of disease.
- The incidence of the various cytopenia correlates directly with the degree of immunosuppression.

## **HIV and Lymphadenopathy: Causes**

- Acute seroconversion
- PGL
- Mycobacterium tubertulosis
- Lymphoma
- Fungal infection
- Mycobacterium avium complex disease
- Kaposi's sarcoma

## **HIV and Malignancies**

- HIV infection is a well-established risk factor for tumour.
- Results in extraordinary increased risk of malignancies.
- AIDS-defining tumour:

Kaposi's sarcoma – RR > 3000

HG Lymphoma – RR > 100-300

Cervical/Anogenital Tumour- RR 20-30

Non-AIDS associated malignancies:

Hodgkin's Lymphoma, Myeloma, Acute leukemia

Testicular/ breast/ prostate/ lung and liver cancers

## **HIV associated Lymphoma (HAL)**

- First reported in 1984.
- Aggressive B cell lymphoma classified as AIDS-defining Illness in 1985.
- Related to polyclonal B cell activation.
- Types:
- High Grade DLBCL Immunoblastic
  - 2 variants- Primary effusion Lymphoma (Body cavity lymphoma)
    - Plasmacytic lymphoma of oral cavity
- Burkitt' type lymphoma (Small non-cleaved cell lymphoma)
- Primary CNS lymphoma
- T-cell Lymphoma

# **HIV associated Lymphoma(HAL)**

- Usually present with advanced stage of disease.
- More aggressive and more extensive "B" symptoms.
- Frequently extra-nodal (GIT, CNS, BM, Liver)
- Involved unusual sites (anus, Heart, body cavity, Jaw, gingival, soft tissues, muscle, rectum)
- Predominant associated with EBV and HHV-8.
- Less response to chemotherapy and high relapse rate.

# **HAL study in Myanmar**

| HAL                   | Htun Lwin Nyein (2004) | Aye Aye Gyi (2009) |
|-----------------------|------------------------|--------------------|
| Total                 | 6                      | 12                 |
| Age (mostly involved) | 23-49 yrs              | 25-56 yrs          |
| Male: Female          | 2.2:1                  | 5:1                |
| Stage III/IV          | 50%                    | 75%                |
| CD4 count <200        | 67%                    | 78%                |
| B cell NHL            | 83%                    | 92%                |
| High grade NHL        | 67%                    | 75%                |

#### **Treatment of HAL**

- Pre-HAART era: poor outcome, median survival- 6 months
- HAART era: ART, OI prophylaxis

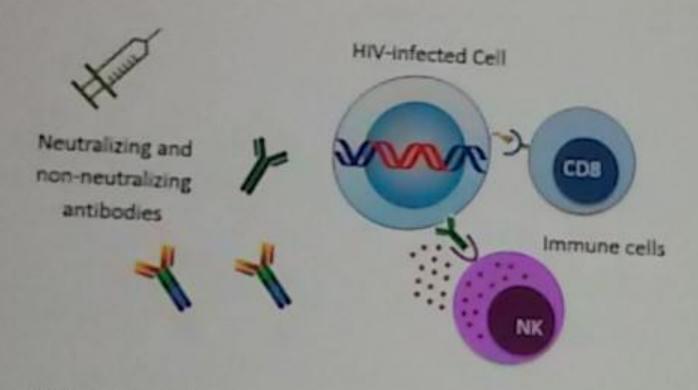
: Chemotherapy – R-CHOP (CR 58%)

R-DA-EPOCH (CR 73%)

- Caution in use of Rituximab at CD4 count <50.</li>
- CNS prophylaxis may be required.
- Relapse/refractory NHL HDT followed by PBSCT option.

## **HIV** and Immunotherapy

- Therapeutic vaccine
- Broadly neutralizing antibody
- PD-1 blockage therapy
- CAR- T cell therapy
- Gene therapy


# Killing HIV-infected Cells



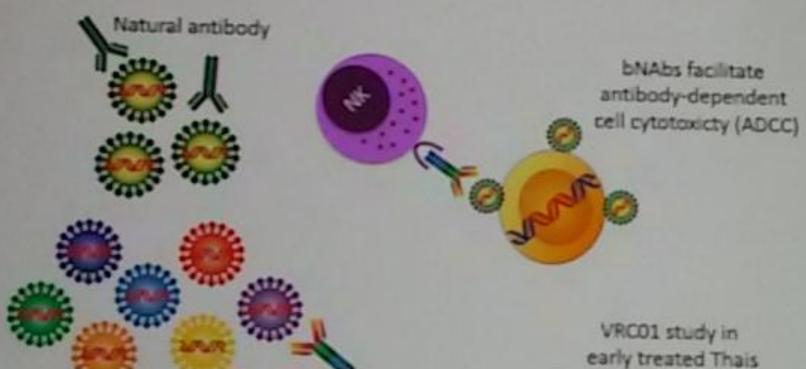
WW.IAS20

W.IASSO

# HIV Vaccines To Boost Immune Function



HIV vaccine studies in early treated adults in Thailand


- Ad26/MVA
- Dendritic cell immunotherapy

Renks-Ngorm, NEMA 2009; Haynes, NESM 3012; Macatangos, ID 2016; Borduschi, Nature 2016; Brodley, Nat Commun 2017

# Results of Therapeutic Vaccine Trial

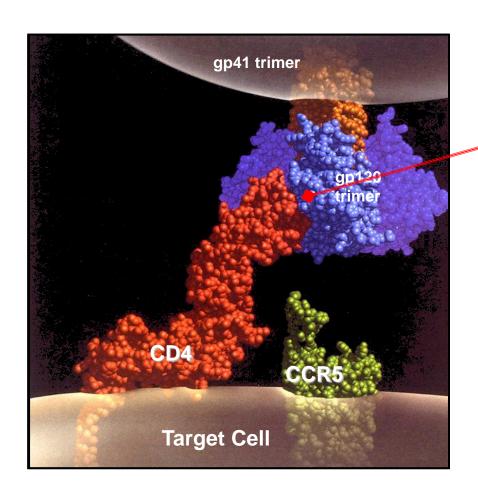
- Therapeutic vaccination in a group of HIV-infected individuals treated with ART early in the course of infection did not prolong the time to viral rebound following analytical treatment interruption of ART (ATI).
- Therapeutic vaccination had no impact on the size of the HIV reservoir as measured in peripheral blood CD4+ T cells.
- The size of the HIV reservoir was not correlated with the time to viral rebound following ATI.
- The study emphasized the importance of placebo controlled trials in assessing time to rebound following ATI.

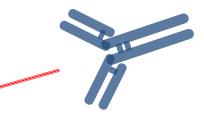
# Broadly Neutralizing Antibodies (bNAbs)



bNAbs can bind many HIV strains early treated Thais

Crowell, Coding Asserworation, 2017 (AS


#### Future strategies:

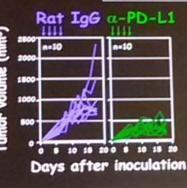

- Combination bNAbs
- Long-acting bNAbs
- · Novel delivery platforms

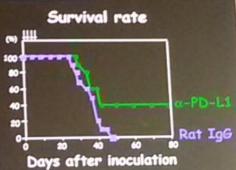
# Broadly Neutralizing Antibodies (bNAbs) Against HIV

- HIV-infected individuals have considerable difficulty making bNAbs in vivo.
- However, we have little difficulty in producing these monoclonal antibodies ex vivo from cloned B cells of HIV-infected individuals.
- Thus, there is considerable interest in the employment of passive transfer of monoclonal bNAbs for the prevention and treatment of HIV infection.

#### VRC01 Binds gp120 CD4bs and Blocks Viral Attachment to CD4







CD4 binding site on gp120 is functionally conserved: All viruses must bind CD4

# Inhibition of tumorigenesis of P815/PD-L1 by anti-PD-L1

Iwai et al. PNAS 2002

P815/PD-L1-+ DBA/2



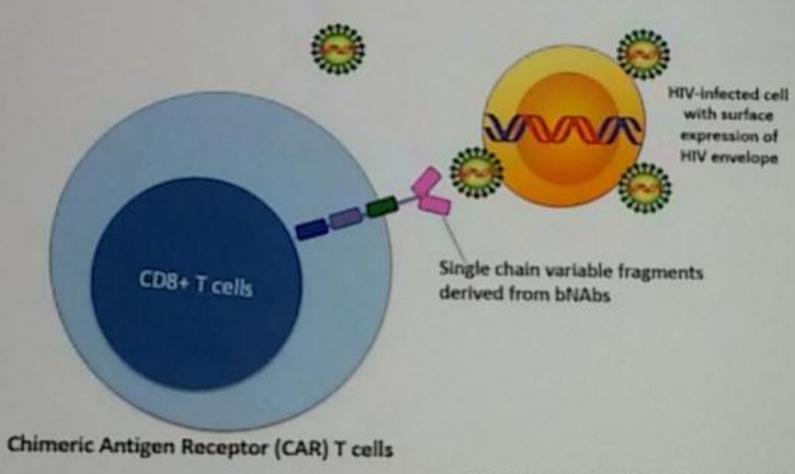


#### Human anti-PD-1 antibody

Established by Human immunoglobulin Tg mice (Xenogenic mice: Medarex: May 9, 2005)

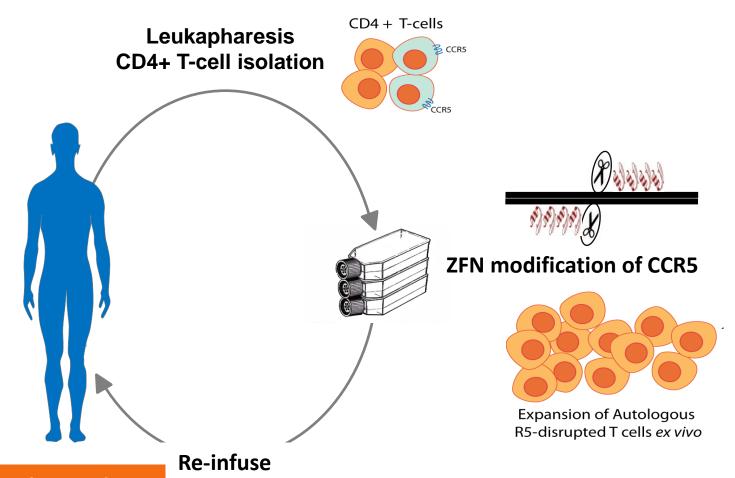
Subclass: IgG4S228P mutant IgG4 (S228P) stabilizes the protein and reduces ADCC. KD = 2.6 nmol/L




#### Paradigm shift of cancer therapy by anti-PD-1 treatment

- 1. Less adverse effects because of no direct damage on normal cells
- 2. Effective for a wide range of tumors (more than 200 clinical trials)
- 3. Long-term effects to responders after 6-month treatment

# Cancers approved for PD-1 Ab therapy

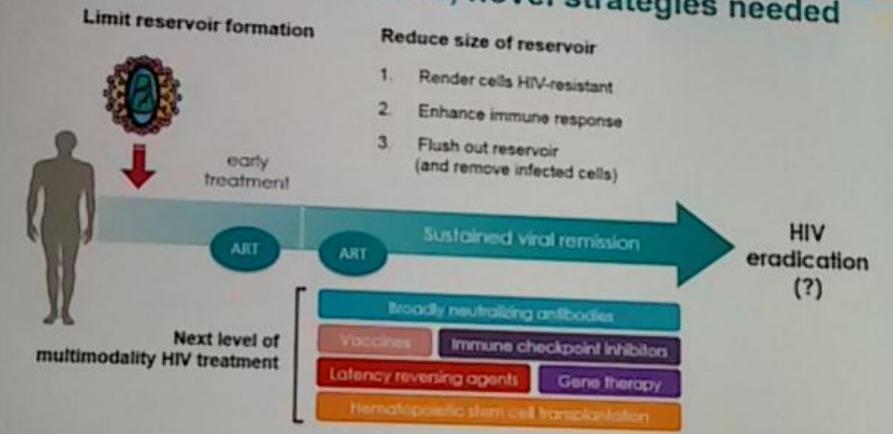

- · 2014 melanoma
- 2015 lung cancer
- · 2016 renal cancer
- 2016 Hodgkin's lymphoma
- · 2016 head and neck cancers
- 2017 urothelial cancer

# Genetic Engineered T cells: Creating Killer T Cells



Modified from a slide by Dr. Thor Wagner (U Moshin; Hale and Wagner, Mul Ther 2017; All, J Virol 2016; Liu, J Virol 2016; Hale, Mol Ther

# **Gene therapy to eliminate CCR5**




+ cyclophosphamide

The Berlin patient: CCR5 negative stem cell transplantation



# ■ 1. ART will not cure HIV, novel strategies needed





## **Take Home Message**

- HIV infection is associated with a myriad of hematological abnormalities.
- HIV infection should be considered in the assessment of patient presenting with any type of cytopenia.
- Successful ART may reverse or lessen the severity of cytopenia (represents the degree of immunosuppression).
- Due to better outcome after HAART era, NHL should be taken into consideration in diagnostic workup of HIV infected patient with lymphadenopathy.
- Future direction in prevention and treatment of HIV infection will be supported by rapidly emerging field in immunotherapy.

